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Abstract
1.	 Understanding	the	factors	influencing	recruitment	in	animal	populations	is	an	im-
portant	 objective	 of	 many	 research	 and	 conservation	 programmes.	 However,	
evaluating	hypotheses	is	challenging	because	recruitment	is	the	outcome	of	birth	
and	survival	processes	that	are	difficult	to	directly	observe.	Capture–recapture	is	
the	most	general	framework	for	estimating	recruitment	in	the	presence	of	obser-
vation	error,	but	existing	methods	 ignore	the	underlying	birth	and	survival	pro-
cesses,	as	well	as	age	effects	and	spatial	variation	in	vital	rates.

2.	 We	present	an	individual-based,	spatio-temporal	model	that	can	be	fit	to	capture–
recapture	data	to	draw	inferences	on	the	birth	and	survival	processes	governing	
recruitment	dynamics.	The	number,	dates,	 and	 spatial	distribution	of	births	are	
modelled	as	outcomes	of	a	point	process,	and	survival	is	modelled	using	a	failure	
time	approach.	Survival	parameters	can	be	modelled	as	functions	of	 individuals	
traits	and	time-varying,	spatial	covariates.	Continuous-	and	discrete-time	formula-
tions	 are	 possible.	We	 demonstrate	 the	model	 using	 7	months	 of	 camera	 data	
collected	on	white-tailed	deer	Odocoileus virginianus	fawns	in	Big	Cypress	National	
Preserve.	 Spot	 patterns	were	 used	 to	 individually	 identify	 28	 fawns,	 detected	
1,454	times	between	December	1,	2015	and	July	1,	2016.

3.	 A	total	of	37	(95%	CI:	30–49)	fawns	were	born,	of	which	16	(95%	CI:	10–23)	sur-
vived	180	days	to	the	recruitment	age.	Mean	parturition	date	was	February	14	
(95%	CI:	February	6–February	22),	much	earlier	than	in	more	temperate	parts	of	
the	 species’	 range,	 but	 coinciding	with	 the	dry	 season	 in	 southern	Florida.	We	
found	little	evidence	that	mortality	rates	decreased	with	age,	but	the	estimate	of	
the	age	effect	was	imprecise.	In	contrast,	we	found	strong	evidence	that	encoun-
ter	 rates	were	age-specific	and	 increased	rapidly	over	the	first	month	of	 life	as	
fawns became more mobile.

4.	 Our	 case	 study	 demonstrates	 the	 potential	 of	 this	 new	 model	 for	 advancing	
knowledge	of	spatial	population	dynamics	by	providing	insights	into	the	birth	and	
juvenile	survival	processes	that	influence	recruitment.	Because	the	model	can	be	
applied	to	data	from	noninvasive	survey	methods	such	as	camera	trapping,	 it	 is	
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1  | INTRODUC TION

Recruitment	is	a	fundamental	process	of	interest	in	studies	of	pop-
ulation	 dynamics,	 and	 many	 conservation	 organizations	 monitor	
recruitment	 to	 inform	 their	management	 actions	 (Chitwood	 et	al.,	
2017;	USFWS,	 2017;	Williams,	Nichols,	 &	 Conroy,	 2002).	 Broadly	
defined,	recruitment	is	the	process	by	which	new	individuals	enter	a	
population,	but	in	most	cases,	interest	lies	in	in situ	recruitment	of	in-
dividuals	that	were	born	into	the	population	and	survived	to	a	spec-
ified	age,	such	as	age	of	sexual	maturity	 (Nichols	&	Pollock,	1990;	
Schaub,	 Ullrich,	 Knötzsch,	 Albrecht,	 &	 Meisser,	 2006).	 Evaluating	
hypotheses	about	in situ	recruitment	(hereafter,	recruitment)	is	chal-
lenging	 because	 it	 is	 the	 outcome	 of	 birth	 and	 survival	 processes	
that	occur	continuously	in	time	and	are	difficult	to	directly	measure.

Numerous	 capture–recapture	 methods	 have	 been	 developed	
to	estimate	recruitment	when	imperfect	detection	makes	it	impos-
sible	 to	 directly	 observe	 (Jolly,	 1965;	 Schwarz	 &	 Arnason,	 1996;	
Seber,	 1965).	 However,	 these	 models	 are	 designed	 for	 data	 that	
are	assumed	to	arise	from	instantaneous	sampling,	or	for	scenarios	
in	which	 it	 is	 safe	 to	 assume	population	 closure	 such	 that	 recruit-
ment	occurs	between,	but	not	during,	sampling	occasions	(Pollock,	
1982;	Williams	et	al.,	2002).	These	assumptions	may	be	reasonable	
for	birth	pulse	populations	where	the	breeding	season	is	relatively	
short	and	synchronized,	or	when	reproduction	and	mortality	rates	
are	negligible	during	the	sampling	period.	However,	 for	many	spe-
cies,	the	breeding	season	is	long	and	characterized	by	high	juvenile	
mortality,	making	the	closure	assumption	problematic.

Another	limitation	of	many	capture–recapture	approaches	to	re-
cruitment	estimation	is	that	they	do	not	accommodate	age	effects.	If	
they	do,	they	assume	that	age	is	known	precisely,	which	is	rarely	pos-
sible	(Crosbie	&	Manly,	1985;	Stokes,	1984).	Ignoring	age	data	makes	
it	difficult	 to	draw	 inferences	on	age-specific	survival	 rates,	which	
is	problematic	because	survival	rates	of	young	individuals	can	vary	
dramatically	with	 age,	 and	 recruitment	may	 be	 influenced	 by	 this	
variation	more	than	it	is	by	the	number	of	individuals	born	(Pradel	&	
Lebreton,	1999).	Estimating	age-related	variation	in	survival	is	there-
fore	desirable,	but	capture	probability	can	also	change	with	age,	and	
conventional	 survival	 estimators	will	 be	biased	 if	 age-related	 vari-
ation	 in	 capture	probability	 is	 ignored	 (Matechou,	Pledger,	 Efford,	
Morgan,	&	Thomson,	2013;	Pollock,	1981).

Of	the	capture–recapture	models	that	do	allow	for	age	effects	
(Crosbie	&	Manly,	1985;	Pollock,	1981;	Stokes,	1984),	no	spatially	ex-
plicit	methods	exist.	Instead,	most	models	are	designed	for	a	single	
population	 in	a	homogeneous	environment	 (Pradel,	1996),	or	 for	a	

metapopulation	consisting	of	a	small	number	of	subpopulations	con-
nected	by	dispersal	(Lebreton,	Hines,	Pradel,	Nichols,	&	Spendelow,	
2003;	Sanderlin,	Waser,	Hines,	&	Nichols,	2012).	This	is	an	import-
ant	limitation	because	vital	rates	often	depend	on	age	and	location,	
and	ecologists	are	increasingly	interested	in	evaluating	hypotheses	
about	 the	 effects	 of	 spatial	 heterogeneity	 in	 the	 environment	 on	
demographic	processes	 (Godsoe,	 Jankowski,	Holt,	&	Gravel,	2017;	
Gurevitch,	 Fox,	 Fowler,	 Graham,	 &	 Thomson,	 2016;	Merow	 et	al.,	
2014).

Recently	 developed	 spatial	 capture–recapture	 (SCR)	 models	
enable	 inference	 on	 spatial	 variation	 in	 density	 and	 detection	 pa-
rameters	 (Borchers	&	Efford,	2008;	Efford,	2004;	Royle,	Chandler,	
Sollmann,	&	Gardner,	 2014),	 but	 the	majority	 of	 these	models	 as-
sume	demographic	closure	(i.e.,	no	reproduction	or	mortality).	Open	
population	 SCR	models	 have	 been	 developed	 (Gardner,	 Reppucci,	
Lucherini,	 &	 Royle,	 2010;	 Raabe,	 Gardner,	 &	 Hightower,	 2013;	
Schaub	&	Royle,	2014)	and	offer	potential	for	advancing	knowledge	
of	spatial	population	dynamics.	However,	as	with	nonspatial	models,	
existing	models	do	not	allow	 for	 insights	 into	 the	underlying	birth	
and	juvenile	survival	processes	that	determine	recruitment,	and	to	
date,	they	have	not	incorporated	age	effects.

The	 purpose	 of	 this	 paper	 is	 to	 present	 a	 statistical	modelling	
framework	that	can	be	used	to	estimate	the	number	of	 individuals	
recruited	into	a	population	by	modelling	spatial	and	temporal	vari-
ation	in	birth	rates	and	juvenile	survival.	The	model	also	allows	for	
mortality	 rates	 and	 captures	 probabilities,	 or	 encounter	 rates,	 to	
depend	on	age.	We	demonstrate	the	utility	of	 this	approach	using	
data	 from	 a	white-tailed	 deer	Odocoileus virginianus	 population	 of	
substantial	conservation	interest	because	it	serves	as	the	prey	base	
for	the	endangered	Florida	panther	Puma concolor coryi.

2  | MODEL

2.1 | Ecological process models

We	develop	a	hierarchical	model	with	a	spatio-temporal	point	pro-
cess	to	describe	the	number,	times,	and	locations	of	births.	Spatio-
temporal	 point	 process	 models	 are	 well-suited	 to	 ecological	 data	
because	 they	allow	 for	population-level	 inference	 from	 individual-
level	 data	 on	 the	 locations	 and	 times	 of	 events	 such	 as	 birth	 or	
mortality	 (Cox	&	 Isham,	1980;	Diggle,	2013;	González,	Rodríguez-
Cortés,	Cronie,	&	Mateu,	2016;	Rathbun	&	Cressie,	1994).	However,	
standard	point	process	models	require	data	on	all	individuals	in	the	

possible	to	apply	it	at	broad	spatial	scales	to	understand	how	environmental	vari-
ables	and	predator	communities	influence	recruitment.

K E Y W O R D S
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population,	which	 is	 typically	 impossible	 to	achieve	because	many	
animals	 go	 undetected	 as	 a	 result	 of	 spatial	 sampling	 and	 imper-
fect	detection.	We	deal	with	 this	obstacle	 in	Section	2.2	by	using	
a	 thinned	 point	 process	model	 for	 the	 capture–recapture	 data.	 In	
addition	to	the	birth	and	detection	processes,	survival	 is	modelled	
using	a	failure	time	approach,	in	which	lifetime	(i.e.,	the	duration	of	
an	individual's	life)	is	modelled	as	a	random	variable	(Cox	&	Oakes,	
1984).	Recruitment	 is	 estimated	as	 the	number	of	 individuals	 that	
live	longer	than	a	prescribed	“recruitment	age.”	The	ecological	state	
variables	of	interest	are:

B births	during	time	frame	 ⊂ ℝ 
in	spatial	region	 ⊂ ℝ

2

(t1, … , tB)∈ times	of	birth

(s1, … , sB)∈ locations	of	birth

(l1, … , lB)∈ (0,∞) lifetimes

a1(t),	…,	aB(t) ages	at	time	t

N(t) abundance	at	time	t

R(t) recruits	alive	at	time	t

The	last	three	variables	are	functions	of	the	first	four.	The	issue	
of	defining	  and 	is	discussed	in	Section	2.2.

2.1.1 | Birth process

In	some	cases,	the	location	of	birth	might	depend	on	time,	calling	for	
a	model	of	the	joint	distribution	p({(si, ti)}Bi=1,B|�).	This	distribution	is	
determined	by	 γ(s, t, Θ)	≥	0,	 the	 spatio-temporal	 intensity	 function	
describing	the	expected	number	of	births	at	 location	s	and	time	 t. 
Note	that,	in	keeping	with	conventional	point	process	notation,	s and 
t	without	subscripts	reference	space	and	time,	whereas	si and ti indi-
cate	the	location	and	time	of	a	particular	birth	event.	The	intensity	
function	also	determines	 the	expected	number	of	births	 in	 ×  , 
according	to:

The	intensity	function	can	depend	on	spatial,	temporal,	and	spatio-
temporal	 covariates.	 Random	 effects	 could	 be	 incorporated	 too,	
but	here	we	focus	on	fixed	effects,	which	can	be	modelled	as	a	lin-
ear	combination	on	a	link	scale:	g(γ(s, t, Θ))	=	v′(s, t)β.	For	example,	
habitat-specific	 birth	 times	 could	 be	 modelled	 using	 a	 log-linear	
model	 with	 an	 interaction	 between	 an	 environmental	 covariate	
v(s)	 and	 time:	 	log	(γ(s, t, Θ))	=	β0 + β1v(s)	+	β2t + β3v(s)t.	 Regardless	
of	the	chosen	intensity	function,	the	conditional	(on	B)	probability	
distribution	of	(si, ti)	is:

Assuming	all	points	in	the	pattern	are	conditionally	independent	of	
one	another,	the	joint	probability	distribution	of	the	point	pattern	is

A	Poisson	distribution	is	often	used	for	p(B),	but	to	facilitate	model	
fitting,	we	use	 data	 augmentation	 (Royle,	 2009)	 to	 fix	 the	 dimen-
sions	of	the	parameter	space	by	setting	M ≫ B	and	adopting	a	bino-
mial model: p(B)	=	Bin(M, ψ),	or	equivalently	a	set	of	latent	variables	
p(bi)	=	Bern(ψ)	for	i	=	1,	…,	M,	with	B =

∑M

i=1
bi.	Regardless,	from	here	

onward,	all	individual-specific	variables	will	have	an	upper	index	of	M 
instead	of	B.	The	parameter	ψ	is	a	function	of	the	expected	number	
of	births	according	to	ψ	=	Γ/M.	However,	it	is	also	possible	to	place	
a	prior	directly	on	ψ,	and	then	model	the	birth	times	and	locations	
independently	as	described	below.

If	the	times	and	locations	of	births	are	independent,	the	model	
can	be	simplified	by	factoring	the	joint	distribution	into	the	product	
of	densities	 for	 the	 two	conditional	point	process	models	 and	 the	
indicator	variable	bi:

where Θ	=	(θ, ϑ, ψ).	Unlike	the	intensity	function	of	the	joint	distribu-
tion,	intensities	of	the	conditional	point	process	distributions	do	not	
need	to	integrate	to	E(B).	Instead,	they	simply	describe	the	distribu-
tions	of	the	M	points	(Diggle,	2013).	The	probability	densities	of	the	
independent	conditional	point	processes	are	found	by	normalizing,	
eg:	p(si|�(s,�)) = �(si,�)∕ � �(s,�) ds.

Several	options	exist	for	specifying	the	conditional	distributions	
of	birth	times	and	locations.	For	birth	pulse	populations,	a	Gaussian	
kernel	 (or	 a	mixture	of	 kernels)	 could	be	used	 for	 the	birth	 times,	
leading	 to	p(ti|𝛾(t,�)) = Norm(t̄, 𝜍2) where � = (t̄, 𝜍2).	 For	 birth	 flow	
populations,	 a	 uniform	 distribution	 could	 be	 used	 in	 place	 of	 the	
normal	distribution.	 If	 there	are	no	hypotheses	about	how	density	
varies	in	space,	a	natural	starting	point	for	the	conditional	distribu-
tion	of	birth	locations	would	be	p(si|�(s,�)) = Unif().	Otherwise,	an	
arbitrary	spatial	intensity	function	with	covariates	could	be	used	and	
then	normalized	to	obtain	the	probability	density.

2.1.2 | Survival

Mortality	rate	can	depend	on	the	time	of	birth,	the	location	of	birth,	
the	age	of	an	individual,	and	other	factors	such	as	temporally	vary-
ing	environmental	conditions.	Drawing	inferences	about	these	pro-
cesses	can	be	accomplished	using	a	spatial	survival	model	defined	in	
terms	of	li,	the	lifetime	of	individual	i.	Standard	lifetime	distributions	
include	 the	exponential	 and	Weibull	 distributions,	 but	other	para-
metric	distributions	suitable	for	positive,	continuous	variables	could	
be	used.	Alternatively,	semiparametric	models	could	be	constructed	
from	a	hazard	function	describing	the	instantaneous	rate	of	mortal-
ity,	 conditional	 on	 surviving	 to	 age	a,	where	 an	 individual's	 age	 at	
time	t	is	denoted	by	ai(t)	=	t	−	ti.

Dropping	 the	 time	 and	 individual	 indexes	 for	 clarity,	 we	
denote	 the	 hazard	 function	 by	 Ω(a).	 Under	 the	 exponential	
model,	 the	 hazard	 does	 not	 change	 with	 age:	 Ω(a)	=	Ω	=	1/ω1, 
whereas	the	age-dependent	hazard	of	the	Weibull	distribution	is	
Ω(a) = �0∕�1(a∕�1)

�0−1. When ω0	=	1,	 the	Weibull	 distribution	 is	
equivalent	to	the	exponential	distribution.	When	ω0	<	1,	the	hazard	

(1)E(B)=Γ=� � �(s, t,�) dsdt

p((si, ti)|�)= �(si, ti,�)∕Γ

(2)p({(si, ti)}
B

i=1
,B|�(s, t|�))=p(B)

B∏

i=1

p((si, ti)|�)

p((si, ti, bi)|�)=p(si|�(s,�))p(ti|�(t,�))p(bi|� )
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decreases	with	age.	Many	other	forms	of	the	hazard	are	possible	
but	they	must	meet	the	conditions	Ω(a)	>	0	and	∫∞

0
Ω(a) da = ∞	to	

ensure	that	lifetime	is	finite	(Cox	&	Oakes,	1984).	The	probability	
of	surviving	to	age	a	is	known	as	the	survivorship	function,	which	
is	 based	 on	 the	 cumulative	 hazard:	Φ(a) = exp (− ∫ a

0
Ω(a) da).	 The	

lifetime	probability	distribution	 is	the	probability	of	surviving	to,	
and	dying	at,	age	l: p(l)	=	Φ(l)Ω(l).

The	model	can	be	generalized	by	allowing	the	hazard	to	depend	
on	 the	 time	and	 location	of	birth.	 Individual-specific,	 time-varying	
covariates	 could	 be	 accommodated	 using	 a	 proportional	 hazards	
model such as

where Ω0(ai(t))	is	the	baseline	hazard	rate,	which	could	be	one	of	the	
models	 mentioned	 above.	 The	 spatio-temporal	 covariates	 w(si, ti)	
serve	to	shift	the	baseline	hazard	by	a	constant	determined	by	the	
regression	coefficients	β.

2.1.3 | Abundance, density and recruitment

Because	 birth	 and	 mortality	 events	 occur	 continuously	 in	 time,	
abundance	 and	density	 also	 vary	 continuously.	Abundance	 is	 sim-
ply	 the	 number	 of	 individuals	 alive	 at	 time	 t, which we define as 
N(t) =

∑M

i=1
zi(t) where

with	di	=	ti + li	being	the	time	of	mortality.	Letting	||	denote	the	
area	of	 the	spatial	 region,	density	 is	given	by	D(t) = N(t)∕||.	 It	 is	
important	 to	note	 that	N(t)	 is	 the	abundance	of	 individuals	born	
in  ,	which	may	be	a	subset	of	the	population	if,	for	example,	only	
a	 single	 cohort	 of	 individuals	 is	 being	 studied.	Multiple	 cohorts	
could	 be	 studied,	 using	 a	 multimodal	 intensity	 function	 for	 the	
birth	times.

The	number	of	recruits	alive	at	time	t	is	the	number	of	individuals	
born	during	 	whose	age	is	greater	than	the	prescribed	recruitment	
age,	 ã,	which	could	be	 the	age	at	maturity	or	some	other	age	 that	
suits	 the	 research	 or	 monitoring	 objective.	 Regardless,	 the	 abun-
dance	of	recruits	at	time	t	is	given	by	the	following:

where I(·)	is	the	indicator	function	returning	1	if	the	argument	is	true	
and	zero	otherwise.

2.2 | Model for the capture–recapture data

The	 primary	 challenge	 facing	 research	 on	 recruitment	 is	 that	 the	
state	variables	cannot	be	directly	observed	because	sampling	from	
a	 collection	 of	 points	 or	 plots	 during	 a	 finite	 time	 interval	 results	
in	censoring	as	well	as	 failure	 to	detect	some	of	 the	 individuals	 in	
the	population	of	interest.	Censoring	occurs	when	a	continuous	ran-
dom	variable	is	not	directly	observed,	but	is	known	to	lie	within	an	
interval.	 In	our	model,	the	lifetimes	of	the	detected	individuals	are	

right-censored,	and	the	birth	dates	may	be	interval-censored	if	age	
information	is	available	to	determine	minimum	and	maximum	birth	
dates.	To	deal	with	the	censoring	and	imperfect	detection	obstacles,	
we	 develop	 an	 observation	model	 to	 describe	 how	 the	 data	 arise	
conditional	on	the	latent	state	variables.

The	data	may	be	recorded	in	either	discrete	time	intervals	or	in	
continuous	time	within	the	sampling	period	denoted	by	 .	Although	
the	 discrete	 time	models	 are	much	more	 common,	we	 begin	with	
a	 continuous	 model	 because	 we	 formulated	 the	 state	 process	 in	
continuous	 time,	 and	because	 continuous-time	data	 are	becoming	
more	common	with	the	widespread	use	of	camera	trapping,	acous-
tic	 telemetry,	 and	 similar	 technologies	 (Borchers,	 Distiller,	 Foster,	
Harmsen,	&	Milazzo,	2014;	Dorazio	&	Karanth,	2017).	Discrete-time	
models	are	discussed	in	Section	3.2.	Let	 ẗij	represent	the	vector	of	
detection	times	for	 individual	 i	 (i	=	1,	…,	n)	at	detector	 j	 ( j	=	1,	…,	J).	
We	model	the	detection	times	as	outcomes	of	a	temporal	point	pro-
cess	that	is	conditional	on	the	distance	between	activity	centres	and	
detectors.	Detectors	may	be	physical	 traps	or	noninvasive	devices	
such	as	camera	traps.	The	following	is	a	list	of	the	data	variables	that	
may be available:

yi1,	…,	yiJ number	of	captures	of	individual	
i	at	each	detector

(ẗij1, … , ẗijyij )∈
times	of	capture	for	individual	i 
at	detector	j

r1,	…,	rn minimum	and	maximum	birth	
times	for	each	detected	
individual

x1,	…,	xJ detector	locations

w1,	…,	wn individual-level,	potentially	
time-varying,	covariates	(e.g.,	
age,	sex)	recorded	for	each	
detection	event

v(s, t) spatio-temporal	covariates	(e.g.,	
elevation,	temperature,	forest	
type)

To	facilitate	model	fitting,	the	capture	frequencies	(yij)	are	aug-
mented	with	M	−	n	rows	of	zeros.	The	individual-level	covariates	are	
augmented	with	missing	values,	and	must	be	imputed	during	model	
fitting	(Royle,	2009;	Royle,	Dorazio,	&	Link,	2007).

Let	λ(si, xj, t)	denote	the	temporal	intensity	function	at	detector	
xj	for	an	individual	with	activity	centre	at	si.	One	possible	model	is	
as follows: λ(si, xj, t)	=	λ0	exp	(−‖si	−	xj‖

2/(2σ2))zi(t),	which	ensures	that	
the	 detection	 rate	 decreases	with	 distance	 between	 activity	 cen-
tres	and	detectors,	and	 is	zero	 if	 the	 individual	 is	not	alive	at	 time	
t	(i.e.,	zi(t)	=	0).	The	expected	number	of	detections	of	individual	i	at	
xj	is	given	by	E(yij) = Λij = ∫ λ(si, xj,t)	dt. If yij	is	Poisson	and	the	times	
of	detection	are	independent,	the	joint	probability	of	the	temporal	
point	process	is	given	by:

Ω(ai(t), si, ti)=Ω0(ai(t)) exp (w
�(si, ti)�)

(3)zi(t)=

{
1 if ti ≤ t < di and bi=1

0 otherwise

R(t)=

M∑

i=1

I(ai(t)≥ ã)zi(t)

p(ẗij, yij�𝜆(si, xj, t), zi(t))=p(ẗij�yij)p(yij)

=

�
yij∏

m=1

ẗijm

Λij

�
Λ
yij
ij exp (−Λij)

yij!
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More	 complicated	 models	 of	 capture	 probability	 can	 be	 con-
structed	to	allow	for	temporal	effects	or	additional	sources	of	indi-
vidual	heterogeneity.	For	example,	home	range	size	often	increases	
with	age	during	the	early	portion	of	an	individual's	life,	and	age	ef-
fects	could	be	modelled	by	allowing	the	spatial	scale	parameter	σ	to	
increase	with	age.

2.2.1 | Age data

In	some	cases,	it	might	be	possible	to	determine	the	age	of	an	indi-
vidual	at	the	time	of	capture,	thereby	making	it	possible	to	treat	some	
of	the	birth	dates	as	data	rather	than	as	latent	variables.	However,	
because	age	 is	a	continuous	variable,	and	most	aging	methods	are	
approximate,	age	is	unlikely	to	be	known	exactly.	Nonetheless,	even	
approximate	age	 information	may	be	beneficial	and	 there	are	sev-
eral	options	for	including	these	data.	First,	independent	experiments	
could	be	conducted	with	individuals	of	known	age	to	build	predictive	
models	 of	 age	 based	on	morphology.	 This	would	make	 it	 possible	
to	predict	the	age	of	individuals	detected	during	capture–recapture	
studies,	while	accounting	for	uncertainty.	A	second	option	is	to	de-
termine	the	minimum	and	maximum	dates	of	birth	for	each	individ-
ual,	and	use	these	ranges	 {r1,	…,	rn}	as	data	 in	an	 interval-censored	
model.	 For	 example,	 the	 model	 p(ti|𝛾(t,�)) = Norm(t̄, 𝜍2) could be 
expanded	 to	p(ri|ti)p(ti|�(t,�)) where p(ri|ti) = I(ri1 ≤ ti ≤ ri2).	An	 ap-
plication	of	this	approach	is	discussed	in	Section	3.

2.2.2 | Defining the state-space

The	state-space	of	(si, ti)	is	 ×  ,	which	must	be	defined	as	part	of	
the	analysis.	As	with	closed-population	SCR	models,	the	spatial	re-
gion		should	include	the	population	of	interest	and	should	be	suf-
ficiently	large	to	ensure	that	the	encounter	rate	is	negligible	for	an	
individual	whose	 activity	 centre	 (or	 birth	 site)	 is	 located	 near	 the	
boundary	 of	 the	 region.	 Smaller	 choices	 of		 will	 result	 in	 undue	

truncation,	causing	upward	bias	in	estimates	of	density.	In	contrast,	
making		larger	will	not	affect	density	estimates	(Royle	et	al.,	2014,	
pp.	 131–133).	When	 specifying	 ,	 the	 time	 interval	 during	 which	
births	occur,	the	primary	consideration	is	that	the	interval	should	be	
wide	enough	to	include	the	birth	times	of	all	individuals	that	could	be	
recruited	during	the	time	period	of	interest.	As	with	,	too	narrow	a	
definition	of	 	will	artificially	truncate	the	point	process	and	cause	
bias	in	estimates	of	birth	times.

3  | APPLIC ATION TO THE FAWN DATA

3.1 | Methods

As	 part	 of	 a	 study	 of	 white-tailed	 deer	 (hereafter,	 deer)	 popula-
tion	dynamics	in	southern	Florida,	we	deployed	60	passive	infrared	
motion-sensor	 cameras	with	white	 flash	 (HCO	Outdoor	 Products,	
Norcross,	GA,	USA;	Figure	1)	 from	December	1,	2015	to	June	30,	
2016.	Cameras	were	placed	in	the	North	Addition	Lands	(Add	Lands)	
unit	of	Big	Cypress	National	Preserve.	Forty	of	 the	cameras	were	
placed	along	off-road	vehicle	(ORV)	trails,	although	public	ORV	use	
was	not	allowed	on	most	trails	during	the	study	period.	Camera	loca-
tions	were	chosen	by	placing	a	725	m	grid	over	a	6	×	5	km2	rectangle	
in	 the	Add	Lands	unit.	 The	on-trail	 cameras	were	 attached	 to	 the	
most	suitable	tree	nearest	to	the	designated	grid	cell	point.	The	re-
maining	20	cameras	were	placed	off-trail,	approximately	250	m	from	
the	nearest	on-trail	camera.	Camera	density	was	chosen	to	balance	
goals	of	covering	a	large	area	while	ensuring	that	individuals	could	
be	 detected	 at	 multiple	 cameras	 within	 their	 home	 range	 (Royle	
et	al.,	2014,	Ch.	10).	Each	camera	was	visited	approximately	once	a	
month	for	camera	maintenance	and	data	download,	and	the	vegeta-
tion	around	the	camera	was	cleared	to	avoid	visual	obstruction	and	
reduce	false	triggering	of	the	camera.

Detected	 fawns	were	 uniquely	 identified	 using	 their	 spot	 pat-
terns,	which	are	distinctive	from	birth	until	approximately	6	months	

F I G U R E  1   	Study	area	and	camera	locations	in	Big	Cypress	National	Preserve,	Florida,	USA
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old.	We	 studied	 the	 patterns	 of	 each	 fawn's	 spots	 on	 both	 sides	
and	identified	groupings	of	spots	that	were	unique	to	the	individual	
(Figure	2).	We	used	 a	 single-camera	design	 throughout	our	 study,	
with	only	one	camera	placed	at	each	location	in	the	grid.	Studies	fo-
cusing	on	spotted	cats	often	utilize	a	two-camera	system	to	capture	
an	image	of	both	flanks	of	the	animal	simultaneously.	We	used	sin-
gle-camera	stations	because	we	were	interested	in	covering	a	broad	
geographical	extent	and	because	the	adult	portion	of	the	deer	pop-
ulation	is	unmarked.	In	spite	of	using	a	single	camera	at	each	station,	
we	were	able	to	visually	confirm	the	identities	of	all	detected	fawns	
due	to	their	tendency	to	spend	substantial	amount	of	time	in	front	
of	the	cameras,	which	allowed	us	to	capture	images	of	both	flanks	
(Figure	2).

Because	our	model	allows	survival	and	detection	rates	 to	vary	
with	age,	information	is	needed	about	the	ages	of	the	detected	indi-
viduals.	However,	as	is	the	case	with	many	wildlife	species,	fawn	age	
could	not	be	determined	precisely	from	our	camera	data.	To	account	
for	our	uncertainty	about	 the	age	of	each	detected	 individual,	we	
created	“birth	date	ranges”	within	which	the	actual	birth	date	was	
believed	to	occur.	To	determine	the	birth	date	ranges,	two	experi-
enced	 observers	 independently	 viewed	 images	 of	 each	 individual.	
Both	observers	 had	multiple	 seasons	 of	 experience	 capturing	 and	
collaring	deer	of	various	ages.	Fawns	detected	very	young	(<10	days)	
and	surviving	many	months	helped	provide	a	baseline	for	determin-
ing	 the	 birth	 date	 ranges	 of	 fawns	 that	were	 detected	 less	 often.	

Factors	considered	in	visual	aging	of	fawns	included	size	of	fawn	rel-
ative	to	the	dam,	head	size	and	shape,	brightness	of	spots,	and	length	
of	hind	leg	relative	to	body	size.	The	birth	date	ranges	recorded	by	
each	observer	were	very	similar,	and	minor	discrepancies	were	re-
solved	by	using	the	earliest	minimum	and	latest	maximum	birth	date	
from	the	two	observers.

We	defined	the	recruitment	age	as	180	days	old	because	this	is	
the	minimum	age	at	which	females	could	become	sexually	mature,	
and	because	it	is	often	used	as	the	recruitment	age	by	state	manage-
ment	agencies.	However,	the	definition	of	recruitment	age	depends	
on	the	study	objectives,	and	recruitment	to	any	age	can	be	estimated	
using	our	model.

Fawns	were	frequently	detected	 in	bursts	of	consecutive	 im-
ages	 as	 they	 lingered	 in	 front	 of	 the	 cameras.	 These	 clustered	
detections	 provide	 little	 information	 about	 the	 detection	 pro-
cesses	of	 interest	and	they	violate	the	conditional	 independence	
assumption	of	the	model,	which	states	that	detection	times	should	
be	independent	after	accounting	for	the	age	of	the	fawn	and	the	
distance	between	activity	centres	and	cameras	(Section	2.2).	We	
identified	 nonindependent	 detections	 by	 visually	 inspecting	 his-
tograms	 of	 time	 differences	 between	 consecutive	 detections	 of	
each	fawn	at	each	camera.	Histograms	of	the	unthinned	data	were	
compared	 to	 histograms	 of	 data	 that	 were	 thinned	 using	 “inde-
pendence	thresholds”	ranging	from	10	to	60	min.	For	each	thresh-
old,	we	discarded	detections	of	a	 fawn	 if	 it	had	been	previously	

F I G U R E  2   	One	of	the	28	fawns	detected	during	the	study.	All	28	individuals	were	uniquely	identifiable	because	of	distinctive	spot	
patterns	on	left	(blue	ovals)	and	right	(yellow	ovals)	flanks.	We	did	not	use	a	paired	camera	design	but	we	were	able	to	match	spot	patterns	
on	both	sides	(red	ovals)	because	fawns	spent	considerable	time	in	front	of	the	cameras
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detected	 at	 the	 same	 camera	 within	 the	 threshold	 time	 period.	
Nonindependent	detections	should	be	evident	by	a	high	propor-
tion	of	detections	 in	 the	 first	 time	bin	of	 the	histogram.	We	 se-
lected	the	threshold	that	reduced	the	frequency	of	detections	in	
the	first	bin	to	a	level	less	than	or	equal	to	the	highest	frequency	
of	 detections	 in	 the	other	bins.	We	paired	 this	 visual	 inspection	
method	 with	 a	 Kolmogorov–Smirnov	 test	 to	 assess	 the	 null	 hy-
pothesis	 that	 the	 time	differences	 for	 the	 thinned	data	 followed	
an	exponential	distribution,	which	would	be	true	if	the	detection	
times	 are	 uniformly	 distributed	 in	 accordance	 with	 a	 homoge-
neous	point	process	 (Cox	&	 Isham,	1980).	This	 is	 a	 conservative	
test	because	our	model	 is	based	on	an	 inhomogeneous	temporal	
point	process	that	allows	for	some	departures	from	the	uniformity	
assumption.	The	Kolmogorov–Smirnov	test	was	applied	separately	
to	 each	 fawn-camera	 combination	 for	which	 there	were	 at	 least	
three	detections.

3.2 | Model specification

We	modelled	birth	times	and	 locations	 independently	because	we	
had	no	reason	to	believe	that	they	were	dependent.	Birth	locations	
were	 modelled	 using	 a	 uniform	 distribution,	 p(si) = Unif(),	 with	
	defined	by	a	700	m	buffer	around	 the	camera	array.	The	700	m	
buffer	was	 chosen	 to	 be	 large	 enough	 to	 ensure	 that	 fawns	 born	
farther	away	would	not	be	detectable	at	our	camera	sites.	The	area	
of	this	polygon	was	37.73	km2.	We	defined	the	birthing	time	interval	
as  = [1, 150]	spanning	from	December	1,	2015	to	April	29,	2016,	
which	is	a	subset	of	the	sampling	time	interval	 	=	[1,	213],	spanning	
from	December	1,	2015	to	June	30,	2016.	The	birthing	interval	  was 
chosen	by	 consulting	 the	 literature	 (Land,	1991),	 and	by	buffering	
the	observed	minimum	and	maximum	birth	date	ranges	by	30	days.	
Birth	dates	were	modelled	using	an	interval-censored	normal	distri-
bution	as	described	in	Section	2.2.1.	Because	we	used	independent	
distributions	for	the	birth	times	and	locations,	we	modelled	the	data	
augmentation	parameter	with	a	ψ	=	Unif(0,	1)	distribution,	instead	of	
modelling	ψ	as	a	function	of	the	joint	intensity	function	as	described	
in	Section	2.1.1.

We	 obtained	 an	 independent	 dataset	 on	 breeding	 chronology	
from	a	hunter	check	station	at	the	Everglades	Wildlife	Management	
Area	 in	 Miami-Dade	 County,	 Florida	 (Florida	 Fish	 and	 Wildlife	
Conservation	Commission,	unpublished	data).	The	dataset	was	com-
prised	of	measurements	of	54	fetuses	from	does	harvested	between	
1980	and	1988.	Fetal	measurements	were	used	to	estimate	the	birth	
date	distribution,	which	we	compared	to	estimates	from	our	model	
(Supporting	Information	S4).

In	 other	 parts	 of	 the	 southeastern	 United	 States,	 white-tailed	
deer	mortality	 rates	 are	 often	 the	highest	 immediately	 after	 birth	
and	decrease	with	age	(Nelson,	Cherry,	Howze,	Warren,	&	Conner,	
2015;	Shuman	et	al.,	2017).	We	therefore	fit	a	model	with	a	Weibull	
lifetime	distribution,	expecting	ω0	<	1,	which	would	indicate	that	the	
hazard	decreases	with	age.	We	compared	the	Weibull	model	to	an	
exponential	model,	which	 implicitly	 assumes	 that	ω0	=	1	 such	 that	
the	hazard	does	not	depend	on	age.

As	with	survival,	we	expected	detection	rates	to	change	with	age	
because	fawns	become	increasingly	mobile	after	birth.	Specifically,	
we	 expected	 home	 range	 size	 to	 increase	 towards	 an	 asymptote	
representing	the	home	range	size	of	the	attending	doe.	We	there-
fore	 modelled	 the	 scale	 parameter	 of	 the	 detection	 function	 as	
σi(t)	=	σ0	exp	(−σ1/ai(t))	where	σ0	is	the	asymptote	and	σ1	determines	
the	rate	at	which	home	range	size	increases	with	age.	This	age-spe-
cific	 scale	 parameter	 was	 included	 in	 a	 Gaussian	 encounter	 rate	
(intensity)	 function:	 λ(si, xj, t)	=	λ0	exp	(−‖si	−	xj‖

2/(2σi(t)
2))zi(t)	 that	

served	 as	 the	 basis	 of	 the	 observation	model.	 An	 important	 note	
about	this	encounter	model	is	that	it	implies	that	si	is	the	birth	loca-
tion,	not	simply	the	individual's	activity	centre,	which	is	the	typical	
definition	of	si	in	other	SCR	applications.	The	reason	for	this	is	that	
σi(t)	is	close	to	zero	immediately	after	birth,	and	therefore	any	indi-
vidual	detected	at	a	young	age	must	be	close	to	its	birth	site.	More	
generally,	“age	at	detection”	provides	information	about	where	the	
individual	 was	 born,	 unless	 individuals	 systematically	 move	 away	
from	birth	sites	as	they	age.

To	simplify	model	fitting,	we	discretized	the	model	by	rounding	
birth	times	down	and	lifetimes	up	to	the	nearest	day.	We	then	ap-
proximated	the	temporal	Poisson	point	process	model	by	modelling	
the	encounter	frequencies	as	Poisson	random	variables	with	expec-
tation	 λk(si, xj):	 k	=	1,	2,	…,	K where K	 is	 the	 number	 of	 days	 in	 the	
study.	A	few	cameras	failed	for	short	amounts	of	time,	which	we	ac-
counted	for	by	setting	the	encounter	rate	to	zero	in	these	instances.

We	used	uniform	priors	 for	λ0, σ0, σ1, t̄, ς, ω0, ω1, and ψ.	After	
trying	values	of	50	and	100,	we	 settled	on	M	=	150	 for	data	aug-
mentation	 because	 the	 posterior	 probability	 Pr(B	=	150)	 was	 ap-
proximately	 zero.	 We	 ran	 8	 parallel	 chains	 for	 72,000	 iterations,	
discarding	the	first	2,000	as	burn-in.	Gelman–Rubin	diagnostic	sta-
tistics	and	visual	inspections	were	used	to	assess	convergence.	The	
model	was	fitted	using	a	custom	Gibbs	sampler	written	in	R-3.3.0	(R	
Core	Team,	2016).	Details	about	the	joint	posterior	distribution,	the	
Gibbs	sampler,	and	R	code	are	provided	in	Supporting	Information	
S2.	 Point	 estimates	 reported	 below	 are	 posterior	 medians	 unless	
	indicated	otherwise.

3.3 | Results

We	obtained	1,454	photos	of	28	spotted	fawns	at	our	60	cameras	
trap	locations.	Cameras	were	operational	for	12,631	(98.8%)	of	the	
12,780	possible	camera	days.	Detections	of	a	fawn	within	one	hour	
of	a	previous	detection	at	the	same	camera	were	deemed	noninde-
pendent.	The	one	hour	 threshold	was	 supported	by	visual	 inspec-
tions	of	histograms	for	the	thinned	and	unthinned	data,	and	by	the	
Kolmogorov–Smirnov	 tests,	 which	 resulted	 in	 p-values	>	0.05	 for	
each	of	the	51	combinations	of	fawns	and	cameras	with	at	least	3	de-
tections	(Supporting	Information	S1).	After	discarding	these	detec-
tions,	we	were	left	with	254	independent	detections	for	our	analysis	
(Figure	3).

The	first	detection	occurred	on	January	22,	2016,	more	than	
a	month	and	a	half	 into	the	study	period.	The	median	number	of	
independent	detections	of	each	fawn	was	7	with	a	range	of	1–30	
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(Figure	3).	Twenty	seven	of	the	28	fawns	were	detected	on	more	
than	 one	occasion.	 Twelve	 individuals	were	 detected	 at	 a	 single	
location,	 13	 were	 detected	 at	 2	 locations,	 one	 was	 detected	 at	
3	 locations,	 and	 two	were	 detected	 at	 5	 locations.	 The	median	
width	 of	 the	 birth	 date	 intervals	 was	 21.2	days	with	 a	 range	 of	
4–31	days	 (Figure	3).	We	never	detected	more	 than	one	 fawn	 in	
a	single	 image,	suggesting	that	does	rarely	gave	birth	to	twins	 in	
our	study	area.

Gelman–Rubin	statistics	were	<1.1	for	all	parameters	and	visual	
inspections	of	the	traceplots	indicated	that	the	Markov	chains	suc-
cessfully	 converged	 (Supporting	 Information	 S3).	 The	 model	 with	
the	Weibull	 lifetime	distribution	had	one	more	parameter	than	the	
exponential	model,	yet	the	Weibull	model	did	not	explain	any	addi-
tional	variation	 in	 the	data	as	 indicated	by	 the	posterior	deviance.	
The	estimate	of	the	Weibull	shape	parameter	was	0.61,	but	the	95%	
CI	was	wide	and	included	1	(Table	1),	indicating	that	the	data	do	not	
support	the	hypothesis	that	the	hazard	rate	changed	with	age.	For	
these	reasons,	we	chose	the	exponential	model	as	the	most	parsimo-
nious	model,	and	the	results	presented	below,	as	well	as	Figures	4–8,	
are	based	on	this	model.	Posterior	summaries	from	both	models	are	
presented	 in	Table	1,	which	 indicates	that	 the	two	models	yielded	
similar	inferences.	The	only	substantial	difference	is	the	wider	95%	
CI	for	the	number	of	births	from	the	Weibull	model	compared	to	the	
exponential	model	(Table	1).

An	 estimated	 37	 (95%	 CI:	 30–49)	 fawns	 were	 born	 in	 the	
37.73	km2	study	area	during	the	2016	fawning	season	(Table	1).	The	
mean	 birth	 date	 was	 February	 14	 (95%	 CI:	 February	 6–February	
22)	(Table	1),	and	most	births	occurred	during	the	first	3	months	of	
the	 year	 (Figure	 4).	 The	 estimate	 of	mean	 birth	 date	 from	 the	 in-
dependent	breeding	chronology	study	was	February	19	(SE	=	2.90,	
Supporting	Information	S4).

The	scale	parameter	(ω1)	of	the	exponential	distribution	can	be	
interpreted	as	the	mean	lifetime,	and	was	estimated	to	be	237.1	days	

(95%	CI:	119.5–625.8,	Table	1).	With	a	constant	hazard	rate	of	1/ω1, 
the	estimated	survivorship	curve	predicts	that	46.0%	(95%	CI:	22.7–
74.0%)	 of	 fawns	 survive	 180	days	 (Figure	 5).	 The	 estimate	 of	 the	
realized	number	of	recruits	was	16	(95%	CI:	10–23,	Table	1),	repre-
senting	43%	of	the	estimated	37	fawns	that	were	born.

The	prolonged	birthing	season	and	the	constant	mortality	rates	
resulted	in	a	steep	increase	in	fawn	abundance	followed	by	a	grad-
ual	decrease	in	abundance	after	the	parturition	season	(Figure	6).	
Fawn	abundance	peaked	at	30	(95%	CI:	26–35)	individuals	in	mid-
March,	followed	by	a	peak	of	12	(95%	CI:	3–20)	recruits	in	mid-Sep-
tember.	 The	 peak	 of	 14	 recruits	 is	 lower	 than	 the	 16	 that	 were	
estimated	to	reach	the	recruitment	age	because	not	all	16	recruited	
fawns	were	alive	at	the	same	time.	It	is	important	to	recognize	that	
abundance	estimates	after	June	30	(the	last	day	of	the	study)	are	
posterior	predictions	computed	from	the	estimated	lifetimes.	This	
explains	why	the	95%	CIs	increase	with	time	(Figure	6).	We	did	not	
use	data	after	June	30	because	the	spots	of	many	fawns	began	to	
fade	 later	 in	 the	summer	and	we	did	not	want	 to	model	 the	spot	
loss	process.

Although	we	did	not	attempt	to	model	effects	of	habitat	vari-
ables	 on	 spatio-temporal	 variation	 in	 density,	 posterior	 density	
surfaces	provided	some	indication	that	fawn	density	was	the	high-
est	in	the	northwestern	region	of	the	study	area	(Figure	7).	There	
was	 no	 evidence	 that	 the	 timing	 of	 birth	 depended	on	 location.	
For	instance,	several	of	the	earliest	births	occurred	in	the	north-
western	and	southeastern	regions	of	the	study	area.	This	supports	
our	decision	to	model	birth	time	and	location	independently,	but	
it	does	not	 rule	out	 the	possibility	 that	habitat	variables	may	 in-
fluence	 the	 birth	 and	 mortality	 processes	 that	 determine	 fawn	
density.

Home	range	size	increased	with	age,	as	indicated	by	the	rapid	
increase in σ	following	birth	(Figure	8).	For	the	first	few	days	after	
birth,	the	encounter	rate	was	approximately	zero	beyond	5	m	from	

F I G U R E  3   	Temporal	summary	
statistics	and	birth	date	ranges	for	the	28	
fawns	detected	between	December	1,	
2015	and	July	1,	2016.	Birth	date	ranges	
were	assigned	by	photo	interpreters	as	
described	in	the	text
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the	 birth	 location	 (Figure	 8).	However,	 after	 just	 10	days,	 fawns	
were	 detectable	 out	 to	 approximately	 200	m	 from	 their	 place	
of	birth.	After	approximately	50	days,	 fawn	home	 range	size	ap-
peared	to	stabilize,	possibly	to	the	home	range	size	of	the	attend-
ing	doe.

4  | DISCUSSION

For	many	species,	recruitment	 is	considered	the	demographic	pro-
cess	most	sensitive	to	environmental	variation	and	therefore	is	the	
focus	 of	 many	monitoring	 programmes	 and	 studies	 of	 population	

TA B L E  1  Posterior	summary	statistics	(Mean,	SD,	and	quantiles)	from	the	spatio-temporal	models	of	fawn	recruitment	fitted	to	the	
camera	data.	The	mean	birth	date	represents	the	number	of	days	after	December	1,	2015.	Lifetime	was	measured	in	days.	The	area	to	which	
the	birth	and	recruitment	estimates	apply	is	37.73	km2.	The	exponential	(Exp)	model	was	deemed	more	parsimonious	than	the	Weibull	
(Weib)	model	because	the	former	had	one	less	parameter	and	similar	posterior	deviance

Model Parameter Mean SD 2.5% 50% 97.5%

Exp Baseline	encounter	rate	(λ0) 0.12 0.014 0.094 0.12 0.15

Weib 0.12 0.014 0.094 0.12 0.15

Exp Asymptote	of	σ	(σ0) 291.0 19.1 256.6 290.2 331.6

Weib 289.4 19.1 255.4 288.3 329.8

Exp Rate	at	which	σ	increases	with	age	(σ1) 12.43 2.87 7.44 12.24 18.62

Weib 12.12 2.89 7.13 11.90 18.27

Exp Mean	birth	date	( t̄) 76.65 4.05 68.81 76.63 84.66

Weib 76.55 3.94 68.88 76.54 84.43

Exp Birth	date	SD	(ς) 20.33 2.83 15.29 20.13 26.39

Weib 20.10 2.72 15.22 19.93 25.80

Exp Shape	parameter	of	lifetime	distribution	(ω0) 1.00 0.00 1.00 1.00 1.00

Weib 0.77 0.55 0.16 0.61 2.23

Exp Scale	parameter	of	lifetime	distribution	(ω1) 273.5 141.3 119.5 237.1 625.8

Weib 566.8 826.0 45.4 258.2 3,511.4

Exp Births	(B) 37.40 4.74 30 37 49

Weib 44.87 15.13 30 41 84

Exp Recruits	(R) 16.34 3.43 10 16 23

Weib 17.96 4.24 9 18 25

Exp Deviance 2,087.2 16.69 2,056.1 2,086.5 2,121.2

Weib 2,090.7 17.4 2,058.5 2,090.0 2,126.6

F I G U R E  4   	Estimates	of	individual	
birth	dates	(blue	dots	below	the	x-axis)	for	
the	28	detected	fawns,	and	the	birth	date	
distribution	characterizing	the	birth	dates	
for	all	(detected	and	not	detected)	fawns	
in	the	population.	The	vertical	red	line	
is	an	independent	estimate	of	the	mean	
parturition	date	from	fetal	measurements	
made	on	54	does	harvested	in	Miami-
Dade	County,	FL,	USA	between	2000	and	
2008
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dynamics	(Clutton-Brock,	Price,	Albon,	&	Jewell,	1992;	Gaillard	et	al.,	
1993;	Williams	et	al.,	2002).	This	 is	especially	 true	 for	 large	herbi-
vores	such	as	deer	that	are	typically	characterized	by	low	variation	
in	adult	survival	and	high	variation	in	juvenile	recruitment	(Gaillard,	
Festa-Bianchet,	&	Yoccoz,	1998;	Hatter	&	Janz,	1994;	Owen-smith,	
1990).	We	developed	a	model	that	can	be	used	to	understand	the	
factors	influencing	the	birth	and	survival	processes	that	determine	
recruitment.

Our	 approach	 to	 recruitment	modelling	 has	 numerous	 benefits	
over	existing	capture–recapture	approaches	 that	assume	that	sam-
pling	occurs	at	a	snapshot	in	time.	Comparing	snapshot	estimates	of	
recruitment	 among	 years	 can	 result	 in	misleading	 inferences	 if	 the	
timing	of	 reproduction	or	 sampling	 varies	 among	 years.	 For	 exam-
ple,	in	our	study,	we	found	that	four	times	more	recruits	were	alive	
in	early	October	than	in	early	September,	and	therefore	among-year	

comparisons	would	be	highly	sensitive	to	the	timing	of	the	sampling	if	
a	snapshot	approach	was	used.	Even	if	sampling	could	be	conducted	
at	the	same	time	each	year,	similar	problems	would	arise	if	reproduc-
tive	phenology	varies	over	time.	Another	advantage	of	our	approach	
is	 that,	unlike	nonspatial	models,	our	model	yields	estimates	of	 re-
cruitment	 per	 unit	 area.	 By	 allowing	 for	 inferences	 at	 any	 point	 in	
time,	and	within	any	spatial	region,	the	modelling	framework	should	
make	it	easier	to	compare	parameters	among	populations	that	were	
sampled	using	different	 time	 intervals	 and	 spatial	 extents.	 In	 addi-
tion,	the	model	can	accommodate	age	data,	even	when	age	cannot	be	
measured	exactly.	This	allows	for	inferences	on	age-related	variation	
in	survival	and	the	degree	to	which	recruitment	is	influenced	by	birth	
rates	vs.	juvenile	survival.	Finally,	although	we	did	not	explore	this	op-
tion	in	our	analysis,	our	model	makes	it	possible	to	learn	about	the	en-
vironmental	variables	influencing	the	timing	and	locations	of	births.

F I G U R E  5   	The	posterior	mean	
estimate	of	the	realized	survivorship	
curve	(thick	blue	line)	with	95%	credible	
intervals	(dotted	blue	lines).	The	faded	
lines	are	examples	of	posterior	samples	
from	which	the	mean	and	95%	CIs	were	
computed.	The	dashed	red	line	is	the	
expected	survivorship	curve	based	on	the	
posterior	mean	estimate	of	ω1

F I G U R E  6   	Abundance	and	density	of	
all	fawns	and	the	recruited	segment	of	the	
population.	Shaded	polygons	are	95%	CIs.	
Note	that	data	collection	ended	on	June	
30,	2016,	and	estimates	after	that	date	
are	posterior	predictions
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Although	capture–recapture	has	been	the	primary	tool	for	study-
ing	recruitment	in	animal	populations,	several	other	approaches	exist.	
One	method	involves	independently	estimating	female	abundance,	

fecundity,	and	juvenile	survival.	The	juvenile	survival	component	is	
typically	accomplished	using	telemetry	but	is	particularly	challeng-
ing	because	many	 individuals	die	 soon	after	being	born,	making	 it	

F I G U R E  7   	Spatiotemporal	variation	
in	the	density	of	fawn	birth	sites.	The	
37.37	km2	spatial	region	was	defined	
by	placing	a	700	m	buffer	around	the	
camera	trap	locations	(white	crosses).	
Fawn	density	is	defined	as	the	number	of	
birth	locations	per	km2	for	fawns	alive	at	
each	time	point.	Overall	fawn	density	and	
abundance	are	shown	in	Figure	6

F I G U R E  8   	Home	range	size	increases	with	age,	resulting	in	(a)	age-specific	encounter	rate	parameters,	and	(b)	age-specific	encounter	
rate	functions	(shown	for	three	ages)
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difficult	to	study	survival	in	that	critical	age	range	(Gilbert,	Lindberg,	
Hundertmark,	&	Person,	2014).	To	overcome	 this	 challenge,	novel	
technologies,	such	as	vaginal	implant	transmitters,	have	been	devel-
oped	to	determine	when	births	occur	so	that	neonates	can	be	cap-
tured	and	tracked.	This	process	can	be	extremely	expensive,	and	the	
invasive	nature	of	the	work	may	impact	the	survival	parameters	of	
interest.	Our	approach	is	less	expensive	and	invasive	than	telemetry	
studies.	 In	addition,	 it	allows	 for	population-level	 inference,	which	
is	difficult	to	achieve	in	telemetry	studies	unless	individuals	can	be	
randomly	sampled	or	 if	 the	capture	 (i.e.,	 sample	 inclusion)	process	
can	be	modelled.	The	primary	drawbacks	of	our	approach	are	that	
it	does	not	provide	information	about	cause-specific	mortality	and	
it	 provides	 less	 direct	 information	 about	 survival	 than	 telemetry	
studies.

From	a	statistical	perspective,	our	model	can	be	described	as	
either	a	spatial	birth-death	process	or	as	a	spatio-temporal	point	
process	 model	 (Bailey,	 1968;	 Cox	 &	 Isham,	 1980;	 Diggle,	 2013;	
Preston,	 1975;	 Rathbun	 &	 Cressie,	 1994).	 In	 the	 classification	
scheme	of	González	et	al.	(2016)	our	model	would	be	placed	in	the	
second	category	of	spatio-temporal	models,	in	which	the	points	do	
not	move	over	time,	but	instead	enter	and	exit	the	state-space	ac-
cording	to	stochastic	processes.	However,	unlike	most	spatio-tem-
poral	 point	 process	models	 in	 the	 statistical	 literature,	 we	 treat	
the	state	process	as	latent,	and	we	use	a	conditional	observation	
model—a	 thinning	 model—for	 the	 capture–recapture	 data.	 Even	
though	not	all	points	are	observed,	the	observation	model	makes	
it	possible	to	use	the	locations	of	detection	and	the	ages	of	the	de-
tected	individuals	to	probabilistically	determine	the	birth	locations	
and	birth	times.	In	addition,	the	information	about	lifetime	comes	
from	the	encounter	rate	data	because	a	high	encounter	rate	sug-
gests	that	an	individual	died	soon	after	it	was	last	detected	(unless	
it	was	detected	near	the	end	of	the	study	period).	Conversely,	low	
encounter	 rates	 suggest	 that	 an	 individual	may	have	 lived	much	
longer	after	its	last	detection.	With	respect	to	existing	capture–re-
capture	models,	our	state	model	is	most	similar	to	that	of	Crosbie	
and	Manly	(1985),	except	that	their	model	is	nonspatial	and	does	
not	accommodate	age	data.	The	primary	differences	between	our	
model	 and	 similar	 open	 population	 SCR	 models	 (Gardner	 et	al.,	
2010;	 Raabe	 et	al.,	 2013)	 is	 that	 the	 latter	 formulate	 the	 entry	
and	 survival	 processes	using	 a	hidden	Markov	model	 in	discrete	
time,	 and	 they	 ignore	 age.	 Under	 the	 hidden	Markov	 approach,	
each zi(t)	 after	 the	 first	 time	 period	 is	 modelled	 conditional	 on	
zi(t	−	1),	 and	 therefore,	 there	are	T	 latent	z	 variables	 to	estimate	
for	each	individual,	instead	of	just	2	(birth	date	and	lifetime)	as	in	
our	model.	This	reduces	the	number	of	latent	variables	that	must	
be	estimated,	or	integrated	out	of	the	likelihood,	by	a	factor	of	T/2, 
thereby	greatly	reducing	computation	time.

Many	 model	 extensions	 warrant	 future	 exploration.	 As	 with	
most	SCR	models,	we	 intentionally	avoided	the	complexities	asso-
ciated	 with	 adopting	 an	 explicit	 movement	 model,	 which	 is	 justi-
fied	given	 that	movement	 is	 typically	not	 the	subject	of	 inquiry	 in	
capture–recapture	studies.	However,	there	are	at	least	three	situa-
tions	in	which	it	might	be	useful	to	adopt	explicit	movement	models	

within	a	SCR	framework.	The	first	is	if	movement	itself	is	of	interest	
(Lebreton	et	al.,	2003;	Raabe	et	al.,	2013;	Royle,	Fuller,	&	Sutherland,	
2016).	For	example,	a	movement	model	could	be	used	to	study	the	
contributions	of	immigration	to	total,	rather	than	in situ,	recruitment.	
A	second	reason	for	adopting	a	movement	model	is	to	account	for	
autocorrelation	 in	detection	 times	 that	might	 arise	when	detector	
density	 is	high	relative	to	the	movement	rate	of	 the	study	species	
(Borchers	et	al.,	2014).	In	our	case,	we	dealt	with	temporal	autocor-
relation	by	discarding	nonindependent	photos	and	by	allowing	the	
scale	parameter	of	the	detection	function	to	increase	with	age.	Even	
so,	 it	 is	possible	that	some	spatial	autocorrelation	was	still	present	
and	unaccounted	 for	 in	our	model,	 and	 further	 thinning	may	have	
resulted	 in	an	unsatisfactory	number	of	detections.	A	third	reason	
for	including	a	movement	model	would	be	to	relax	the	assumption	
of	stationary	home	ranges.	Our	model	assumes	that	encounter	rate	
depends	only	on	age	and	the	distance	from	the	birth	location	to	the	
detector.	However,	if	individuals	systematically	select	habitat	that	is	
far	from	their	birth	locations,	bias	in	the	encounter	rate	parameters	
could	arise.	Future	work	could	address	 these	 issues	by	adopting	a	
movement	model,	such	as	the	Ornstein–Uhlenbeck	process	(Hooten,	
Johnson,	McClintock,	&	Morales,	2017),	and	then	modelling	detec-
tion	conditional	on	 location	at	 time	 t,	 rather	 than	as	a	 function	of	
distance	to	activity	centre.	Another	extension	worth	considering	is	
allowing	 for	 negative	 covariance	 between	 the	 baseline	 encounter	
rate	λ0	and	the	scale	parameter	σ,	which	would	arise	if	animals	spend	
less	time	near	their	home	range	centres	as	their	home	ranges	expand	
with	age	(Efford	&	Mowat,	2014).

Several	design	issues	should	be	considered	when	attempting	to	
study	recruitment	with	our	model.	As	with	most	SCR	studies,	mini-
mizing	the	variance	of	the	recruitment	estimator	can	be	achieved	by	
finding	the	spatial	arrangement	of	detectors	that	results	 in	a	good	
balance	of	 the	number	of	 individuals	detected	and	 the	number	of	
recaptures	obtained	(Sollmann,	Gardner,	&	Belant,	2012).	Although	
there	is	no	optimal	spacing	that	applies	to	all	systems,	a	good	design	
can	often	be	achieved	by	using	a	detector	spacing	of	approximately	
2σ	 (Chandler	&	Royle,	 2013).	However,	 our	model	 assumes	 that	σ 
changes	with	age,	indicating	that	the	optimal	detector	density	might	
also	 change	 throughout	 the	 season.	Although	 the	 logistics	 associ-
ated	with	 changing	 detector	 configurations	 during	 sampling	 could	
be	prohibitive,	it	might	be	useful	to	attempt	to	keep	detector	spacing	
near 2σ	by	using	high	density	clusters	of	detectors	early	in	the	sea-
son	when	most	individuals	are	young,	and	then	spreading	them	out	
into	a	more	uniform	pattern	when	home	range	sizes	stabilize.	This	
could	help	detect	fawns	at	earlier	ages,	thereby	removing	some	of	
the	uncertainty	about	age-related	variation	in	survival.	The	temporal	
aspect	of	the	design	is	also	likely	to	affect	the	precision	of	estimates.	
Intuitively,	 one	 should	 attempt	 to	 begin	 sampling	 before	 the	 first	
birth	event	and	continue	until	the	last	recruitment	event.	Using	data	
from	shorter	time	 intervals	will	add	to	the	uncertainty	about	birth	
dates	and	survival	times,	but	should	not	cause	bias	unless	the	model	
for	the	distribution	of	birth	times	is	mis-specified.	Although	it	would	
be	 impossible	 to	 fully	 explore	 these	 design	 and	 model	 consider-
ations,	we	recommend	conducting	simulation	studies	in	the	context	
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of	specific	study	objectives	and	constraints,	and	we	provide	some	
simulation	code	in	Supporting	Information.

Results	from	our	analysis	of	the	deer	data	suggested	that	over-
all	fawn	survival	rate	was	comparable	to	telemetry-based	estimates	
from	 southern	 Florida	 Florida	 (Land,	 1991);	 however,	 unlike	 other	
recent	 studies	 of	 fawn	 survival	 from	 elsewhere	 in	 the	 southeast-
ern	US	(Chitwood	et	al.,	2015;	Kilgo,	Ray,	Vukovich,	Goode,	&	Ruth,	
2012;	 Saalfeld	 &	 Ditchkoff,	 2007;	 Shuman	 et	al.,	 2017),	 mortality	
rates	 were	 essentially	 constant	 during	 the	 first	 6	months	 of	 life,	
with	approximately	40%	of	individuals	surviving	to	the	recruitment	
age.	Strikingly,	a	recent	study	from	Louisiana	found	that	only	50%	
of	 fawns	 survived	 the	 first	 week	 of	 life,	 although	mortality	 rates	
quickly	decreased	to	the	point	that	27%	of	the	fawns	in	their	sample	
survived	to	84	days	(Shuman	et	al.,	2017).	We	propose	three	hypoth-
eses	 to	 explain	 the	 large	 differences	 in	 age-specific	 survival	 rates	
between	 our	 study	 area	 and	 those	 in	 other	 regions	 of	 the	 south-
eastern	US.	First,	previous	studies	used	telemetry,	and	it	is	possible	
that	 some	 neonatal	mortality	 in	 these	 studies	was	 attributable	 to	
capture,	handling,	and	use	of	the	transmitters	themselves.	Although	
no	evidence	of	transmitter	and	handling	effects	exists,	it	would	be	
possible	to	evaluate	this	hypothesis	by	using	our	model	to	compare	
survival	rates	of	collared	and	uncollared	individuals.

A	second	hypothesis	explaining	the	relatively	low	neonate	mor-
tality	 that	we	 observed	 concerns	 the	 unique	 predator	 community	
in	 our	 study	 area.	Our	work	was	 conducted	 in	 the	 only	 region	 of	
the	eastern	US	with	a	 reproducing	puma	population.	Panthers	are	
ambush	 predators,	 and	 therefore	 may	 be	 less	 likely	 to	 depredate	
young	fawns	than	other	predators,	particularly	while	fawns	are	still	
in	 the	hiding	phase	and	 remain	motionless	 for	 the	majority	of	 the	
day	between	 feedings	 (Ballard,	 Lutz,	Keegan,	Carpenter,	&	deVos,	
2001;	 Preisser,	 Orrock,	 &	 Schmitz,	 2007;	 Schmitz,	 2008,	 but	 see	
McCoy,	Murphie,	Gunther,	&	Murphie,	2014).	In	addition,	deer	sur-
vival	studies	conducted	elsewhere	likely	had	higher	densities	of	the	
three	major	fawn	predators	found	in	the	southeastern	US:	black	bear	
Ursus americanus,	bobcat	Lynx rufus,	and	coyote	Canis latrans.	Coyote	
density	is	extremely	low	in	our	study	area	relative	to	other	regions	in	
the	southeastern	US,	as	coyotes	have	been	documented	in	southern	
Florida	only	within	the	last	few	decades	(McCown	&	Scheick,	2007).	
Black	 bears	 can	 be	 effective	 fawn	 predators	 within	 the	 first	 few	
weeks	of	life	before	fawns	are	highly	mobile	(Shuman	et	al.,	2017).	
However,	South	Florida	black	bears	are	largely	dormant	in	February	
during	peak	fawning,	and	predation	on	deer	by	bears	in	this	region	
appears	to	be	opportunistic	and	only	constitutes	a	small	portion	of	
their	diet	 (Maehr	&	Brady,	1984).	Additionally,	 bear	density	 in	Big	
Cypress	(0.13	bears/km2,	Humm,	McCown,	Scheick,	&	Clark,	2016)	
is	 considerably	 lower	 than	 in	 other	 areas	 of	 the	 southeastern	US,	
such	as	Louisiana	(0.66	bears/km2,	Hooker,	2010).	Bobcats	are	abun-
dant	in	our	study	area	and	can	greatly	affect	fawn	survival	(Labisky,	
Boulay,	Miller,	Sargent,	&	Zultowsky,	1995;	Land,	1991;	Nelson	et	al.,	
2015;	 Shuman	 et	al.,	 2017),	 but	 they	 are	 ambush	 predators	 and	
therefore	likely	do	not	frequently	encounter	sedentary	neonates.

A	third	explanation	of	the	 lack	of	evidence	of	age-related	vari-
ation	in	survival	is	that	our	sample	size	may	have	been	too	small	to	

detect	the	age	effect.	This	is	suggested	by	the	wide	credible	interval	
for	the	shape	parameter	of	the	Weibull	distribution.	The	lack	of	pre-
cision	can	be	attributed	to	detecting	only	28	fawns,	most	of	which	
were	 first	 detected	 after	 their	 second	week	 of	 life.	 The	 ability	 to	
detect	age	effects	in	survival	can	be	expected	to	increase	with	the	
number	 of	 individuals	 detected,	 the	 average	 encounter	 rate,	 and	
timespan	of	the	study	relative	to	the	average	lifetime	of	the	species.	
For	species	such	as	white-tailed	deer	with	 low	neonate	movement	
rates,	precision	could	also	be	increased	through	efforts	to	increase	
encounter	 rates	of	young	 fawns	or	by	extending	 the	model	 to	ac-
commodate	both	camera	and	telemetry	data.

Another	direction	for	future	work	is	to	develop	better	methods	
for	 aging	 individuals	using	 camera	data	or	other	 types	of	data	 for	
which	 age	 cannot	 be	 determined	 precisely.	 One	 option	would	 be	
to	conduct	experiments	with	captive	individuals	to	determine	how	
morphological	measurements,	or	perhaps	 ratios	of	measurements,	
change	with	age	when	individuals	are	detected	at	variable	distances	
and	angles.	Simple	regression	models	could	then	be	used	to	predict	
age	with	more	precision	than	we	achieved	with	our	wide	birth	date	
ranges.	Future	work	 could	also	attempt	 to	account	 for	 the	 loss	of	
spots	 after	 fawns	 are	 6	months	 old.	We	 ignored	 this	 problem	be-
cause	fewer	than	two	individuals	likely	reached	this	age	during	our	
sampling	time	frame	(Figure	6).	However,	we	could	have	extended	
our	time	frame	and	modelled	the	spot	loss	process	by	incorporating	
data	on	unmarked	individuals	(Chandler	&	Royle,	2013).

Birth	 site	 locations	were	 assumed	 to	be	mutually	 independent	
because	we	had	no	evidence	of	clustering	or	repulsion.	For	example,	
we	never	detected	more	 than	one	 fawn	 in	a	photo,	and	 fecundity	
is	believed	to	be	<1.2	 fawns/doe	 in	southern	Florida	 (Land,	1991).	
However,	 for	 species	with	 higher	 fecundity	 that	 can	 give	 birth	 to	
multiple	offspring	in	the	same	location,	data	on	litter	size	could	be	
used	to	model	nonindependence	of	birth	sites	using	a	marked	point	
process	 in	which	the	mark	 is	the	number	of	 individuals	born	at	 lo-
cation	si	 (Diggle,	2013).	More	general	 forms	of	clustering	could	be	
modelled	with	a	Neyman–Scott	process,	whereas	territoriality	and	
other	forms	of	inhibition	could	be	modelled	with	a	Markov	point	pro-
cess	(Reich	&	Gardner,	2014).

Our	 model	 could	 also	 be	 extended	 to	 include	 multiple	 age	
classes,	which	would	allow	for	inferences	about	fecundity.	In	our	
analysis,	we	ignored	the	adult	portion	of	the	population	and	directly	
estimated	the	number	of	births	per	unit	area.	This	was	deliberate	
because	adult	female	deer	typically	cannot	be	uniquely	identified,	
making	it	difficult	to	estimate	their	abundance.	However,	if	adult	
abundance	could	be	estimated,	perhaps	by	using	 recently	devel-
oped	methods	for	unmarked	animals	(Chandler	&	Royle,	2013),	the	
expected	number	of	births	could	be	modelled	using	a	density-de-
pendent	 fecundity	 function.	 Although	 this	 would	 increase	 the	
complexity	of	the	model,	it	might	result	in	more	precise	estimates	
of	birth	and	recruitment	parameters.	More	 importantly,	 it	would	
provide	a	means	of	connecting	SCR	models	to	classical	age-struc-
tured	population	models	and	integral	projection	models,	which	are	
rarely	 formulated	as	spatially	explicit	 statistical	models	 (Caswell,	
2001;	Ellner	&	Rees,	2006).
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