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Abstract
1.	 Understanding the factors influencing recruitment in animal populations is an im-
portant objective of many research and conservation programmes. However, 
evaluating hypotheses is challenging because recruitment is the outcome of birth 
and survival processes that are difficult to directly observe. Capture–recapture is 
the most general framework for estimating recruitment in the presence of obser-
vation error, but existing methods ignore the underlying birth and survival pro-
cesses, as well as age effects and spatial variation in vital rates.

2.	 We present an individual-based, spatio-temporal model that can be fit to capture–
recapture data to draw inferences on the birth and survival processes governing 
recruitment dynamics. The number, dates, and spatial distribution of births are 
modelled as outcomes of a point process, and survival is modelled using a failure 
time approach. Survival parameters can be modelled as functions of individuals 
traits and time-varying, spatial covariates. Continuous- and discrete-time formula-
tions are possible. We demonstrate the model using 7 months of camera data 
collected on white-tailed deer Odocoileus virginianus fawns in Big Cypress National 
Preserve. Spot patterns were used to individually identify 28 fawns, detected 
1,454 times between December 1, 2015 and July 1, 2016.

3.	 A total of 37 (95% CI: 30–49) fawns were born, of which 16 (95% CI: 10–23) sur-
vived 180 days to the recruitment age. Mean parturition date was February 14 
(95% CI: February 6–February 22), much earlier than in more temperate parts of 
the species’ range, but coinciding with the dry season in southern Florida. We 
found little evidence that mortality rates decreased with age, but the estimate of 
the age effect was imprecise. In contrast, we found strong evidence that encoun-
ter rates were age-specific and increased rapidly over the first month of life as 
fawns became more mobile.

4.	 Our case study demonstrates the potential of this new model for advancing 
knowledge of spatial population dynamics by providing insights into the birth and 
juvenile survival processes that influence recruitment. Because the model can be 
applied to data from noninvasive survey methods such as camera trapping, it is 
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1  | INTRODUC TION

Recruitment is a fundamental process of interest in studies of pop-
ulation dynamics, and many conservation organizations monitor 
recruitment to inform their management actions (Chitwood et al., 
2017; USFWS, 2017; Williams, Nichols, & Conroy, 2002). Broadly 
defined, recruitment is the process by which new individuals enter a 
population, but in most cases, interest lies in in situ recruitment of in-
dividuals that were born into the population and survived to a spec-
ified age, such as age of sexual maturity (Nichols & Pollock, 1990; 
Schaub, Ullrich, Knötzsch, Albrecht, & Meisser, 2006). Evaluating 
hypotheses about in situ recruitment (hereafter, recruitment) is chal-
lenging because it is the outcome of birth and survival processes 
that occur continuously in time and are difficult to directly measure.

Numerous capture–recapture methods have been developed 
to estimate recruitment when imperfect detection makes it impos-
sible to directly observe (Jolly, 1965; Schwarz & Arnason, 1996; 
Seber, 1965). However, these models are designed for data that 
are assumed to arise from instantaneous sampling, or for scenarios 
in which it is safe to assume population closure such that recruit-
ment occurs between, but not during, sampling occasions (Pollock, 
1982; Williams et al., 2002). These assumptions may be reasonable 
for birth pulse populations where the breeding season is relatively 
short and synchronized, or when reproduction and mortality rates 
are negligible during the sampling period. However, for many spe-
cies, the breeding season is long and characterized by high juvenile 
mortality, making the closure assumption problematic.

Another limitation of many capture–recapture approaches to re-
cruitment estimation is that they do not accommodate age effects. If 
they do, they assume that age is known precisely, which is rarely pos-
sible (Crosbie & Manly, 1985; Stokes, 1984). Ignoring age data makes 
it difficult to draw inferences on age-specific survival rates, which 
is problematic because survival rates of young individuals can vary 
dramatically with age, and recruitment may be influenced by this 
variation more than it is by the number of individuals born (Pradel & 
Lebreton, 1999). Estimating age-related variation in survival is there-
fore desirable, but capture probability can also change with age, and 
conventional survival estimators will be biased if age-related vari-
ation in capture probability is ignored (Matechou, Pledger, Efford, 
Morgan, & Thomson, 2013; Pollock, 1981).

Of the capture–recapture models that do allow for age effects 
(Crosbie & Manly, 1985; Pollock, 1981; Stokes, 1984), no spatially ex-
plicit methods exist. Instead, most models are designed for a single 
population in a homogeneous environment (Pradel, 1996), or for a 

metapopulation consisting of a small number of subpopulations con-
nected by dispersal (Lebreton, Hines, Pradel, Nichols, & Spendelow, 
2003; Sanderlin, Waser, Hines, & Nichols, 2012). This is an import-
ant limitation because vital rates often depend on age and location, 
and ecologists are increasingly interested in evaluating hypotheses 
about the effects of spatial heterogeneity in the environment on 
demographic processes (Godsoe, Jankowski, Holt, & Gravel, 2017; 
Gurevitch, Fox, Fowler, Graham, & Thomson, 2016; Merow et al., 
2014).

Recently developed spatial capture–recapture (SCR) models 
enable inference on spatial variation in density and detection pa-
rameters (Borchers & Efford, 2008; Efford, 2004; Royle, Chandler, 
Sollmann, & Gardner, 2014), but the majority of these models as-
sume demographic closure (i.e., no reproduction or mortality). Open 
population SCR models have been developed (Gardner, Reppucci, 
Lucherini, & Royle, 2010; Raabe, Gardner, & Hightower, 2013; 
Schaub & Royle, 2014) and offer potential for advancing knowledge 
of spatial population dynamics. However, as with nonspatial models, 
existing models do not allow for insights into the underlying birth 
and juvenile survival processes that determine recruitment, and to 
date, they have not incorporated age effects.

The purpose of this paper is to present a statistical modelling 
framework that can be used to estimate the number of individuals 
recruited into a population by modelling spatial and temporal vari-
ation in birth rates and juvenile survival. The model also allows for 
mortality rates and captures probabilities, or encounter rates, to 
depend on age. We demonstrate the utility of this approach using 
data from a white-tailed deer Odocoileus virginianus population of 
substantial conservation interest because it serves as the prey base 
for the endangered Florida panther Puma concolor coryi.

2  | MODEL

2.1 | Ecological process models

We develop a hierarchical model with a spatio-temporal point pro-
cess to describe the number, times, and locations of births. Spatio-
temporal point process models are well-suited to ecological data 
because they allow for population-level inference from individual-
level data on the locations and times of events such as birth or 
mortality (Cox & Isham, 1980; Diggle, 2013; González, Rodríguez-
Cortés, Cronie, & Mateu, 2016; Rathbun & Cressie, 1994). However, 
standard point process models require data on all individuals in the 

possible to apply it at broad spatial scales to understand how environmental vari-
ables and predator communities influence recruitment.
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population, which is typically impossible to achieve because many 
animals go undetected as a result of spatial sampling and imper-
fect detection. We deal with this obstacle in Section 2.2 by using 
a thinned point process model for the capture–recapture data. In 
addition to the birth and detection processes, survival is modelled 
using a failure time approach, in which lifetime (i.e., the duration of 
an individual's life) is modelled as a random variable (Cox & Oakes, 
1984). Recruitment is estimated as the number of individuals that 
live longer than a prescribed “recruitment age.” The ecological state 
variables of interest are:

B births during time frame  ⊂ ℝ 
in spatial region  ⊂ ℝ

2

(t1, … , tB)∈ times of birth

(s1, … , sB)∈ locations of birth

(l1, … , lB)∈ (0,∞) lifetimes

a1(t), …, aB(t) ages at time t

N(t) abundance at time t

R(t) recruits alive at time t

The last three variables are functions of the first four. The issue 
of defining   and  is discussed in Section 2.2.

2.1.1 | Birth process

In some cases, the location of birth might depend on time, calling for 
a model of the joint distribution p({(si, ti)}Bi=1,B|�). This distribution is 
determined by γ(s, t, Θ) ≥ 0, the spatio-temporal intensity function 
describing the expected number of births at location s and time t. 
Note that, in keeping with conventional point process notation, s and 
t without subscripts reference space and time, whereas si and ti indi-
cate the location and time of a particular birth event. The intensity 
function also determines the expected number of births in  ×  , 
according to:

The intensity function can depend on spatial, temporal, and spatio-
temporal covariates. Random effects could be incorporated too, 
but here we focus on fixed effects, which can be modelled as a lin-
ear combination on a link scale: g(γ(s, t, Θ)) = v′(s, t)β. For example, 
habitat-specific birth times could be modelled using a log-linear 
model with an interaction between an environmental covariate 
v(s) and time:   log (γ(s, t, Θ)) = β0 + β1v(s) + β2t + β3v(s)t. Regardless 
of the chosen intensity function, the conditional (on B) probability 
distribution of (si, ti) is:

Assuming all points in the pattern are conditionally independent of 
one another, the joint probability distribution of the point pattern is

A Poisson distribution is often used for p(B), but to facilitate model 
fitting, we use data augmentation (Royle, 2009) to fix the dimen-
sions of the parameter space by setting M ≫ B and adopting a bino-
mial model: p(B) = Bin(M, ψ), or equivalently a set of latent variables 
p(bi) = Bern(ψ) for i = 1, …, M, with B =

∑M

i=1
bi. Regardless, from here 

onward, all individual-specific variables will have an upper index of M 
instead of B. The parameter ψ is a function of the expected number 
of births according to ψ = Γ/M. However, it is also possible to place 
a prior directly on ψ, and then model the birth times and locations 
independently as described below.

If the times and locations of births are independent, the model 
can be simplified by factoring the joint distribution into the product 
of densities for the two conditional point process models and the 
indicator variable bi:

where Θ = (θ, ϑ, ψ). Unlike the intensity function of the joint distribu-
tion, intensities of the conditional point process distributions do not 
need to integrate to E(B). Instead, they simply describe the distribu-
tions of the M points (Diggle, 2013). The probability densities of the 
independent conditional point processes are found by normalizing, 
eg: p(si|�(s,�)) = �(si,�)∕ � �(s,�) ds.

Several options exist for specifying the conditional distributions 
of birth times and locations. For birth pulse populations, a Gaussian 
kernel (or a mixture of kernels) could be used for the birth times, 
leading to p(ti|𝛾(t,�)) = Norm(t̄, 𝜍2) where � = (t̄, 𝜍2). For birth flow 
populations, a uniform distribution could be used in place of the 
normal distribution. If there are no hypotheses about how density 
varies in space, a natural starting point for the conditional distribu-
tion of birth locations would be p(si|�(s,�)) = Unif(). Otherwise, an 
arbitrary spatial intensity function with covariates could be used and 
then normalized to obtain the probability density.

2.1.2 | Survival

Mortality rate can depend on the time of birth, the location of birth, 
the age of an individual, and other factors such as temporally vary-
ing environmental conditions. Drawing inferences about these pro-
cesses can be accomplished using a spatial survival model defined in 
terms of li, the lifetime of individual i. Standard lifetime distributions 
include the exponential and Weibull distributions, but other para-
metric distributions suitable for positive, continuous variables could 
be used. Alternatively, semiparametric models could be constructed 
from a hazard function describing the instantaneous rate of mortal-
ity, conditional on surviving to age a, where an individual's age at 
time t is denoted by ai(t) = t − ti.

Dropping the time and individual indexes for clarity, we 
denote the hazard function by Ω(a). Under the exponential 
model, the hazard does not change with age: Ω(a) = Ω = 1/ω1, 
whereas the age-dependent hazard of the Weibull distribution is 
Ω(a) = �0∕�1(a∕�1)

�0−1. When ω0 = 1, the Weibull distribution is 
equivalent to the exponential distribution. When ω0 < 1, the hazard 

(1)E(B)=Γ=� � �(s, t,�) dsdt

p((si, ti)|�)= �(si, ti,�)∕Γ

(2)p({(si, ti)}
B

i=1
,B|�(s, t|�))=p(B)

B∏

i=1

p((si, ti)|�)

p((si, ti, bi)|�)=p(si|�(s,�))p(ti|�(t,�))p(bi|� )
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decreases with age. Many other forms of the hazard are possible 
but they must meet the conditions Ω(a) > 0 and ∫∞

0
Ω(a) da = ∞ to 

ensure that lifetime is finite (Cox & Oakes, 1984). The probability 
of surviving to age a is known as the survivorship function, which 
is based on the cumulative hazard: Φ(a) = exp (− ∫ a

0
Ω(a) da). The 

lifetime probability distribution is the probability of surviving to, 
and dying at, age l: p(l) = Φ(l)Ω(l).

The model can be generalized by allowing the hazard to depend 
on the time and location of birth. Individual-specific, time-varying 
covariates could be accommodated using a proportional hazards 
model such as

where Ω0(ai(t)) is the baseline hazard rate, which could be one of the 
models mentioned above. The spatio-temporal covariates w(si, ti) 
serve to shift the baseline hazard by a constant determined by the 
regression coefficients β.

2.1.3 | Abundance, density and recruitment

Because birth and mortality events occur continuously in time, 
abundance and density also vary continuously. Abundance is sim-
ply the number of individuals alive at time t, which we define as 
N(t) =

∑M

i=1
zi(t) where

with di = ti + li being the time of mortality. Letting || denote the 
area of the spatial region, density is given by D(t) = N(t)∕||. It is 
important to note that N(t) is the abundance of individuals born 
in  , which may be a subset of the population if, for example, only 
a single cohort of individuals is being studied. Multiple cohorts 
could be studied, using a multimodal intensity function for the 
birth times.

The number of recruits alive at time t is the number of individuals 
born during   whose age is greater than the prescribed recruitment 
age, ã, which could be the age at maturity or some other age that 
suits the research or monitoring objective. Regardless, the abun-
dance of recruits at time t is given by the following:

where I(·) is the indicator function returning 1 if the argument is true 
and zero otherwise.

2.2 | Model for the capture–recapture data

The primary challenge facing research on recruitment is that the 
state variables cannot be directly observed because sampling from 
a collection of points or plots during a finite time interval results 
in censoring as well as failure to detect some of the individuals in 
the population of interest. Censoring occurs when a continuous ran-
dom variable is not directly observed, but is known to lie within an 
interval. In our model, the lifetimes of the detected individuals are 

right-censored, and the birth dates may be interval-censored if age 
information is available to determine minimum and maximum birth 
dates. To deal with the censoring and imperfect detection obstacles, 
we develop an observation model to describe how the data arise 
conditional on the latent state variables.

The data may be recorded in either discrete time intervals or in 
continuous time within the sampling period denoted by . Although 
the discrete time models are much more common, we begin with 
a continuous model because we formulated the state process in 
continuous time, and because continuous-time data are becoming 
more common with the widespread use of camera trapping, acous-
tic telemetry, and similar technologies (Borchers, Distiller, Foster, 
Harmsen, & Milazzo, 2014; Dorazio & Karanth, 2017). Discrete-time 
models are discussed in Section 3.2. Let ẗij represent the vector of 
detection times for individual i (i = 1, …, n) at detector j ( j = 1, …, J). 
We model the detection times as outcomes of a temporal point pro-
cess that is conditional on the distance between activity centres and 
detectors. Detectors may be physical traps or noninvasive devices 
such as camera traps. The following is a list of the data variables that 
may be available:

yi1, …, yiJ number of captures of individual 
i at each detector

(ẗij1, … , ẗijyij )∈
times of capture for individual i 
at detector j

r1, …, rn minimum and maximum birth 
times for each detected 
individual

x1, …, xJ detector locations

w1, …, wn individual-level, potentially 
time-varying, covariates (e.g., 
age, sex) recorded for each 
detection event

v(s, t) spatio-temporal covariates (e.g., 
elevation, temperature, forest 
type)

To facilitate model fitting, the capture frequencies (yij) are aug-
mented with M − n rows of zeros. The individual-level covariates are 
augmented with missing values, and must be imputed during model 
fitting (Royle, 2009; Royle, Dorazio, & Link, 2007).

Let λ(si, xj, t) denote the temporal intensity function at detector 
xj for an individual with activity centre at si. One possible model is 
as follows: λ(si, xj, t) = λ0 exp (−‖si − xj‖

2/(2σ2))zi(t), which ensures that 
the detection rate decreases with distance between activity cen-
tres and detectors, and is zero if the individual is not alive at time 
t (i.e., zi(t) = 0). The expected number of detections of individual i at 
xj is given by E(yij) = Λij = ∫ λ(si, xj,t) dt. If yij is Poisson and the times 
of detection are independent, the joint probability of the temporal 
point process is given by:

Ω(ai(t), si, ti)=Ω0(ai(t)) exp (w
�(si, ti)�)

(3)zi(t)=

{
1 if ti ≤ t < di and bi=1

0 otherwise

R(t)=

M∑

i=1

I(ai(t)≥ ã)zi(t)

p(ẗij, yij�𝜆(si, xj, t), zi(t))=p(ẗij�yij)p(yij)

=

�
yij∏

m=1

ẗijm

Λij

�
Λ
yij
ij exp (−Λij)

yij!
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More complicated models of capture probability can be con-
structed to allow for temporal effects or additional sources of indi-
vidual heterogeneity. For example, home range size often increases 
with age during the early portion of an individual's life, and age ef-
fects could be modelled by allowing the spatial scale parameter σ to 
increase with age.

2.2.1 | Age data

In some cases, it might be possible to determine the age of an indi-
vidual at the time of capture, thereby making it possible to treat some 
of the birth dates as data rather than as latent variables. However, 
because age is a continuous variable, and most aging methods are 
approximate, age is unlikely to be known exactly. Nonetheless, even 
approximate age information may be beneficial and there are sev-
eral options for including these data. First, independent experiments 
could be conducted with individuals of known age to build predictive 
models of age based on morphology. This would make it possible 
to predict the age of individuals detected during capture–recapture 
studies, while accounting for uncertainty. A second option is to de-
termine the minimum and maximum dates of birth for each individ-
ual, and use these ranges {r1, …, rn} as data in an interval-censored 
model. For example, the model p(ti|𝛾(t,�)) = Norm(t̄, 𝜍2) could be 
expanded to p(ri|ti)p(ti|�(t,�)) where p(ri|ti) = I(ri1 ≤ ti ≤ ri2). An ap-
plication of this approach is discussed in Section 3.

2.2.2 | Defining the state-space

The state-space of (si, ti) is  ×  , which must be defined as part of 
the analysis. As with closed-population SCR models, the spatial re-
gion  should include the population of interest and should be suf-
ficiently large to ensure that the encounter rate is negligible for an 
individual whose activity centre (or birth site) is located near the 
boundary of the region. Smaller choices of  will result in undue 

truncation, causing upward bias in estimates of density. In contrast, 
making  larger will not affect density estimates (Royle et al., 2014, 
pp. 131–133). When specifying  , the time interval during which 
births occur, the primary consideration is that the interval should be 
wide enough to include the birth times of all individuals that could be 
recruited during the time period of interest. As with , too narrow a 
definition of   will artificially truncate the point process and cause 
bias in estimates of birth times.

3  | APPLIC ATION TO THE FAWN DATA

3.1 | Methods

As part of a study of white-tailed deer (hereafter, deer) popula-
tion dynamics in southern Florida, we deployed 60 passive infrared 
motion-sensor cameras with white flash (HCO Outdoor Products, 
Norcross, GA, USA; Figure 1) from December 1, 2015 to June 30, 
2016. Cameras were placed in the North Addition Lands (Add Lands) 
unit of Big Cypress National Preserve. Forty of the cameras were 
placed along off-road vehicle (ORV) trails, although public ORV use 
was not allowed on most trails during the study period. Camera loca-
tions were chosen by placing a 725 m grid over a 6 × 5 km2 rectangle 
in the Add Lands unit. The on-trail cameras were attached to the 
most suitable tree nearest to the designated grid cell point. The re-
maining 20 cameras were placed off-trail, approximately 250 m from 
the nearest on-trail camera. Camera density was chosen to balance 
goals of covering a large area while ensuring that individuals could 
be detected at multiple cameras within their home range (Royle 
et al., 2014, Ch. 10). Each camera was visited approximately once a 
month for camera maintenance and data download, and the vegeta-
tion around the camera was cleared to avoid visual obstruction and 
reduce false triggering of the camera.

Detected fawns were uniquely identified using their spot pat-
terns, which are distinctive from birth until approximately 6 months 

F I G U R E  1    Study area and camera locations in Big Cypress National Preserve, Florida, USA
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old. We studied the patterns of each fawn's spots on both sides 
and identified groupings of spots that were unique to the individual 
(Figure 2). We used a single-camera design throughout our study, 
with only one camera placed at each location in the grid. Studies fo-
cusing on spotted cats often utilize a two-camera system to capture 
an image of both flanks of the animal simultaneously. We used sin-
gle-camera stations because we were interested in covering a broad 
geographical extent and because the adult portion of the deer pop-
ulation is unmarked. In spite of using a single camera at each station, 
we were able to visually confirm the identities of all detected fawns 
due to their tendency to spend substantial amount of time in front 
of the cameras, which allowed us to capture images of both flanks 
(Figure 2).

Because our model allows survival and detection rates to vary 
with age, information is needed about the ages of the detected indi-
viduals. However, as is the case with many wildlife species, fawn age 
could not be determined precisely from our camera data. To account 
for our uncertainty about the age of each detected individual, we 
created “birth date ranges” within which the actual birth date was 
believed to occur. To determine the birth date ranges, two experi-
enced observers independently viewed images of each individual. 
Both observers had multiple seasons of experience capturing and 
collaring deer of various ages. Fawns detected very young (<10 days) 
and surviving many months helped provide a baseline for determin-
ing the birth date ranges of fawns that were detected less often. 

Factors considered in visual aging of fawns included size of fawn rel-
ative to the dam, head size and shape, brightness of spots, and length 
of hind leg relative to body size. The birth date ranges recorded by 
each observer were very similar, and minor discrepancies were re-
solved by using the earliest minimum and latest maximum birth date 
from the two observers.

We defined the recruitment age as 180 days old because this is 
the minimum age at which females could become sexually mature, 
and because it is often used as the recruitment age by state manage-
ment agencies. However, the definition of recruitment age depends 
on the study objectives, and recruitment to any age can be estimated 
using our model.

Fawns were frequently detected in bursts of consecutive im-
ages as they lingered in front of the cameras. These clustered 
detections provide little information about the detection pro-
cesses of interest and they violate the conditional independence 
assumption of the model, which states that detection times should 
be independent after accounting for the age of the fawn and the 
distance between activity centres and cameras (Section 2.2). We 
identified nonindependent detections by visually inspecting his-
tograms of time differences between consecutive detections of 
each fawn at each camera. Histograms of the unthinned data were 
compared to histograms of data that were thinned using “inde-
pendence thresholds” ranging from 10 to 60 min. For each thresh-
old, we discarded detections of a fawn if it had been previously 

F I G U R E  2    One of the 28 fawns detected during the study. All 28 individuals were uniquely identifiable because of distinctive spot 
patterns on left (blue ovals) and right (yellow ovals) flanks. We did not use a paired camera design but we were able to match spot patterns 
on both sides (red ovals) because fawns spent considerable time in front of the cameras
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detected at the same camera within the threshold time period. 
Nonindependent detections should be evident by a high propor-
tion of detections in the first time bin of the histogram. We se-
lected the threshold that reduced the frequency of detections in 
the first bin to a level less than or equal to the highest frequency 
of detections in the other bins. We paired this visual inspection 
method with a Kolmogorov–Smirnov test to assess the null hy-
pothesis that the time differences for the thinned data followed 
an exponential distribution, which would be true if the detection 
times are uniformly distributed in accordance with a homoge-
neous point process (Cox & Isham, 1980). This is a conservative 
test because our model is based on an inhomogeneous temporal 
point process that allows for some departures from the uniformity 
assumption. The Kolmogorov–Smirnov test was applied separately 
to each fawn-camera combination for which there were at least 
three detections.

3.2 | Model specification

We modelled birth times and locations independently because we 
had no reason to believe that they were dependent. Birth locations 
were modelled using a uniform distribution, p(si) = Unif(), with 
 defined by a 700 m buffer around the camera array. The 700 m 
buffer was chosen to be large enough to ensure that fawns born 
farther away would not be detectable at our camera sites. The area 
of this polygon was 37.73 km2. We defined the birthing time interval 
as  = [1, 150] spanning from December 1, 2015 to April 29, 2016, 
which is a subset of the sampling time interval  = [1, 213], spanning 
from December 1, 2015 to June 30, 2016. The birthing interval   was 
chosen by consulting the literature (Land, 1991), and by buffering 
the observed minimum and maximum birth date ranges by 30 days. 
Birth dates were modelled using an interval-censored normal distri-
bution as described in Section 2.2.1. Because we used independent 
distributions for the birth times and locations, we modelled the data 
augmentation parameter with a ψ = Unif(0, 1) distribution, instead of 
modelling ψ as a function of the joint intensity function as described 
in Section 2.1.1.

We obtained an independent dataset on breeding chronology 
from a hunter check station at the Everglades Wildlife Management 
Area in Miami-Dade County, Florida (Florida Fish and Wildlife 
Conservation Commission, unpublished data). The dataset was com-
prised of measurements of 54 fetuses from does harvested between 
1980 and 1988. Fetal measurements were used to estimate the birth 
date distribution, which we compared to estimates from our model 
(Supporting Information S4).

In other parts of the southeastern United States, white-tailed 
deer mortality rates are often the highest immediately after birth 
and decrease with age (Nelson, Cherry, Howze, Warren, & Conner, 
2015; Shuman et al., 2017). We therefore fit a model with a Weibull 
lifetime distribution, expecting ω0 < 1, which would indicate that the 
hazard decreases with age. We compared the Weibull model to an 
exponential model, which implicitly assumes that ω0 = 1 such that 
the hazard does not depend on age.

As with survival, we expected detection rates to change with age 
because fawns become increasingly mobile after birth. Specifically, 
we expected home range size to increase towards an asymptote 
representing the home range size of the attending doe. We there-
fore modelled the scale parameter of the detection function as 
σi(t) = σ0 exp (−σ1/ai(t)) where σ0 is the asymptote and σ1 determines 
the rate at which home range size increases with age. This age-spe-
cific scale parameter was included in a Gaussian encounter rate 
(intensity) function: λ(si, xj, t) = λ0 exp (−‖si − xj‖

2/(2σi(t)
2))zi(t) that 

served as the basis of the observation model. An important note 
about this encounter model is that it implies that si is the birth loca-
tion, not simply the individual's activity centre, which is the typical 
definition of si in other SCR applications. The reason for this is that 
σi(t) is close to zero immediately after birth, and therefore any indi-
vidual detected at a young age must be close to its birth site. More 
generally, “age at detection” provides information about where the 
individual was born, unless individuals systematically move away 
from birth sites as they age.

To simplify model fitting, we discretized the model by rounding 
birth times down and lifetimes up to the nearest day. We then ap-
proximated the temporal Poisson point process model by modelling 
the encounter frequencies as Poisson random variables with expec-
tation λk(si, xj): k = 1, 2, …, K where K is the number of days in the 
study. A few cameras failed for short amounts of time, which we ac-
counted for by setting the encounter rate to zero in these instances.

We used uniform priors for λ0, σ0, σ1, t̄, ς, ω0, ω1, and ψ. After 
trying values of 50 and 100, we settled on M = 150 for data aug-
mentation because the posterior probability Pr(B = 150) was ap-
proximately zero. We ran 8 parallel chains for 72,000 iterations, 
discarding the first 2,000 as burn-in. Gelman–Rubin diagnostic sta-
tistics and visual inspections were used to assess convergence. The 
model was fitted using a custom Gibbs sampler written in R-3.3.0 (R 
Core Team, 2016). Details about the joint posterior distribution, the 
Gibbs sampler, and R code are provided in Supporting Information 
S2. Point estimates reported below are posterior medians unless 
indicated otherwise.

3.3 | Results

We obtained 1,454 photos of 28 spotted fawns at our 60 cameras 
trap locations. Cameras were operational for 12,631 (98.8%) of the 
12,780 possible camera days. Detections of a fawn within one hour 
of a previous detection at the same camera were deemed noninde-
pendent. The one hour threshold was supported by visual inspec-
tions of histograms for the thinned and unthinned data, and by the 
Kolmogorov–Smirnov tests, which resulted in p-values > 0.05 for 
each of the 51 combinations of fawns and cameras with at least 3 de-
tections (Supporting Information S1). After discarding these detec-
tions, we were left with 254 independent detections for our analysis 
(Figure 3).

The first detection occurred on January 22, 2016, more than 
a month and a half into the study period. The median number of 
independent detections of each fawn was 7 with a range of 1–30 
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(Figure 3). Twenty seven of the 28 fawns were detected on more 
than one occasion. Twelve individuals were detected at a single 
location, 13 were detected at 2 locations, one was detected at 
3 locations, and two were detected at 5 locations. The median 
width of the birth date intervals was 21.2 days with a range of 
4–31 days (Figure 3). We never detected more than one fawn in 
a single image, suggesting that does rarely gave birth to twins in 
our study area.

Gelman–Rubin statistics were <1.1 for all parameters and visual 
inspections of the traceplots indicated that the Markov chains suc-
cessfully converged (Supporting Information S3). The model with 
the Weibull lifetime distribution had one more parameter than the 
exponential model, yet the Weibull model did not explain any addi-
tional variation in the data as indicated by the posterior deviance. 
The estimate of the Weibull shape parameter was 0.61, but the 95% 
CI was wide and included 1 (Table 1), indicating that the data do not 
support the hypothesis that the hazard rate changed with age. For 
these reasons, we chose the exponential model as the most parsimo-
nious model, and the results presented below, as well as Figures 4–8, 
are based on this model. Posterior summaries from both models are 
presented in Table 1, which indicates that the two models yielded 
similar inferences. The only substantial difference is the wider 95% 
CI for the number of births from the Weibull model compared to the 
exponential model (Table 1).

An estimated 37 (95% CI: 30–49) fawns were born in the 
37.73 km2 study area during the 2016 fawning season (Table 1). The 
mean birth date was February 14 (95% CI: February 6–February 
22) (Table 1), and most births occurred during the first 3 months of 
the year (Figure 4). The estimate of mean birth date from the in-
dependent breeding chronology study was February 19 (SE = 2.90, 
Supporting Information S4).

The scale parameter (ω1) of the exponential distribution can be 
interpreted as the mean lifetime, and was estimated to be 237.1 days 

(95% CI: 119.5–625.8, Table 1). With a constant hazard rate of 1/ω1, 
the estimated survivorship curve predicts that 46.0% (95% CI: 22.7–
74.0%) of fawns survive 180 days (Figure 5). The estimate of the 
realized number of recruits was 16 (95% CI: 10–23, Table 1), repre-
senting 43% of the estimated 37 fawns that were born.

The prolonged birthing season and the constant mortality rates 
resulted in a steep increase in fawn abundance followed by a grad-
ual decrease in abundance after the parturition season (Figure 6). 
Fawn abundance peaked at 30 (95% CI: 26–35) individuals in mid-
March, followed by a peak of 12 (95% CI: 3–20) recruits in mid-Sep-
tember. The peak of 14 recruits is lower than the 16 that were 
estimated to reach the recruitment age because not all 16 recruited 
fawns were alive at the same time. It is important to recognize that 
abundance estimates after June 30 (the last day of the study) are 
posterior predictions computed from the estimated lifetimes. This 
explains why the 95% CIs increase with time (Figure 6). We did not 
use data after June 30 because the spots of many fawns began to 
fade later in the summer and we did not want to model the spot 
loss process.

Although we did not attempt to model effects of habitat vari-
ables on spatio-temporal variation in density, posterior density 
surfaces provided some indication that fawn density was the high-
est in the northwestern region of the study area (Figure 7). There 
was no evidence that the timing of birth depended on location. 
For instance, several of the earliest births occurred in the north-
western and southeastern regions of the study area. This supports 
our decision to model birth time and location independently, but 
it does not rule out the possibility that habitat variables may in-
fluence the birth and mortality processes that determine fawn 
density.

Home range size increased with age, as indicated by the rapid 
increase in σ following birth (Figure 8). For the first few days after 
birth, the encounter rate was approximately zero beyond 5 m from 

F I G U R E  3    Temporal summary 
statistics and birth date ranges for the 28 
fawns detected between December 1, 
2015 and July 1, 2016. Birth date ranges 
were assigned by photo interpreters as 
described in the text
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the birth location (Figure 8). However, after just 10 days, fawns 
were detectable out to approximately 200 m from their place 
of birth. After approximately 50 days, fawn home range size ap-
peared to stabilize, possibly to the home range size of the attend-
ing doe.

4  | DISCUSSION

For many species, recruitment is considered the demographic pro-
cess most sensitive to environmental variation and therefore is the 
focus of many monitoring programmes and studies of population 

TA B L E   1  Posterior summary statistics (Mean, SD, and quantiles) from the spatio-temporal models of fawn recruitment fitted to the 
camera data. The mean birth date represents the number of days after December 1, 2015. Lifetime was measured in days. The area to which 
the birth and recruitment estimates apply is 37.73 km2. The exponential (Exp) model was deemed more parsimonious than the Weibull 
(Weib) model because the former had one less parameter and similar posterior deviance

Model Parameter Mean SD 2.5% 50% 97.5%

Exp Baseline encounter rate (λ0) 0.12 0.014 0.094 0.12 0.15

Weib 0.12 0.014 0.094 0.12 0.15

Exp Asymptote of σ (σ0) 291.0 19.1 256.6 290.2 331.6

Weib 289.4 19.1 255.4 288.3 329.8

Exp Rate at which σ increases with age (σ1) 12.43 2.87 7.44 12.24 18.62

Weib 12.12 2.89 7.13 11.90 18.27

Exp Mean birth date ( t̄) 76.65 4.05 68.81 76.63 84.66

Weib 76.55 3.94 68.88 76.54 84.43

Exp Birth date SD (ς) 20.33 2.83 15.29 20.13 26.39

Weib 20.10 2.72 15.22 19.93 25.80

Exp Shape parameter of lifetime distribution (ω0) 1.00 0.00 1.00 1.00 1.00

Weib 0.77 0.55 0.16 0.61 2.23

Exp Scale parameter of lifetime distribution (ω1) 273.5 141.3 119.5 237.1 625.8

Weib 566.8 826.0 45.4 258.2 3,511.4

Exp Births (B) 37.40 4.74 30 37 49

Weib 44.87 15.13 30 41 84

Exp Recruits (R) 16.34 3.43 10 16 23

Weib 17.96 4.24 9 18 25

Exp Deviance 2,087.2 16.69 2,056.1 2,086.5 2,121.2

Weib 2,090.7 17.4 2,058.5 2,090.0 2,126.6

F I G U R E  4    Estimates of individual 
birth dates (blue dots below the x-axis) for 
the 28 detected fawns, and the birth date 
distribution characterizing the birth dates 
for all (detected and not detected) fawns 
in the population. The vertical red line 
is an independent estimate of the mean 
parturition date from fetal measurements 
made on 54 does harvested in Miami-
Dade County, FL, USA between 2000 and 
2008
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dynamics (Clutton-Brock, Price, Albon, & Jewell, 1992; Gaillard et al., 
1993; Williams et al., 2002). This is especially true for large herbi-
vores such as deer that are typically characterized by low variation 
in adult survival and high variation in juvenile recruitment (Gaillard, 
Festa-Bianchet, & Yoccoz, 1998; Hatter & Janz, 1994; Owen-smith, 
1990). We developed a model that can be used to understand the 
factors influencing the birth and survival processes that determine 
recruitment.

Our approach to recruitment modelling has numerous benefits 
over existing capture–recapture approaches that assume that sam-
pling occurs at a snapshot in time. Comparing snapshot estimates of 
recruitment among years can result in misleading inferences if the 
timing of reproduction or sampling varies among years. For exam-
ple, in our study, we found that four times more recruits were alive 
in early October than in early September, and therefore among-year 

comparisons would be highly sensitive to the timing of the sampling if 
a snapshot approach was used. Even if sampling could be conducted 
at the same time each year, similar problems would arise if reproduc-
tive phenology varies over time. Another advantage of our approach 
is that, unlike nonspatial models, our model yields estimates of re-
cruitment per unit area. By allowing for inferences at any point in 
time, and within any spatial region, the modelling framework should 
make it easier to compare parameters among populations that were 
sampled using different time intervals and spatial extents. In addi-
tion, the model can accommodate age data, even when age cannot be 
measured exactly. This allows for inferences on age-related variation 
in survival and the degree to which recruitment is influenced by birth 
rates vs. juvenile survival. Finally, although we did not explore this op-
tion in our analysis, our model makes it possible to learn about the en-
vironmental variables influencing the timing and locations of births.

F I G U R E  5    The posterior mean 
estimate of the realized survivorship 
curve (thick blue line) with 95% credible 
intervals (dotted blue lines). The faded 
lines are examples of posterior samples 
from which the mean and 95% CIs were 
computed. The dashed red line is the 
expected survivorship curve based on the 
posterior mean estimate of ω1

F I G U R E  6    Abundance and density of 
all fawns and the recruited segment of the 
population. Shaded polygons are 95% CIs. 
Note that data collection ended on June 
30, 2016, and estimates after that date 
are posterior predictions
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Although capture–recapture has been the primary tool for study-
ing recruitment in animal populations, several other approaches exist. 
One method involves independently estimating female abundance, 

fecundity, and juvenile survival. The juvenile survival component is 
typically accomplished using telemetry but is particularly challeng-
ing because many individuals die soon after being born, making it 

F I G U R E  7    Spatiotemporal variation 
in the density of fawn birth sites. The 
37.37 km2 spatial region was defined 
by placing a 700 m buffer around the 
camera trap locations (white crosses). 
Fawn density is defined as the number of 
birth locations per km2 for fawns alive at 
each time point. Overall fawn density and 
abundance are shown in Figure 6

F I G U R E  8    Home range size increases with age, resulting in (a) age-specific encounter rate parameters, and (b) age-specific encounter 
rate functions (shown for three ages)



2126  |    Methods in Ecology and Evolu
on CHANDLER et al.

difficult to study survival in that critical age range (Gilbert, Lindberg, 
Hundertmark, & Person, 2014). To overcome this challenge, novel 
technologies, such as vaginal implant transmitters, have been devel-
oped to determine when births occur so that neonates can be cap-
tured and tracked. This process can be extremely expensive, and the 
invasive nature of the work may impact the survival parameters of 
interest. Our approach is less expensive and invasive than telemetry 
studies. In addition, it allows for population-level inference, which 
is difficult to achieve in telemetry studies unless individuals can be 
randomly sampled or if the capture (i.e., sample inclusion) process 
can be modelled. The primary drawbacks of our approach are that 
it does not provide information about cause-specific mortality and 
it provides less direct information about survival than telemetry 
studies.

From a statistical perspective, our model can be described as 
either a spatial birth-death process or as a spatio-temporal point 
process model (Bailey, 1968; Cox & Isham, 1980; Diggle, 2013; 
Preston, 1975; Rathbun & Cressie, 1994). In the classification 
scheme of González et al. (2016) our model would be placed in the 
second category of spatio-temporal models, in which the points do 
not move over time, but instead enter and exit the state-space ac-
cording to stochastic processes. However, unlike most spatio-tem-
poral point process models in the statistical literature, we treat 
the state process as latent, and we use a conditional observation 
model—a thinning model—for the capture–recapture data. Even 
though not all points are observed, the observation model makes 
it possible to use the locations of detection and the ages of the de-
tected individuals to probabilistically determine the birth locations 
and birth times. In addition, the information about lifetime comes 
from the encounter rate data because a high encounter rate sug-
gests that an individual died soon after it was last detected (unless 
it was detected near the end of the study period). Conversely, low 
encounter rates suggest that an individual may have lived much 
longer after its last detection. With respect to existing capture–re-
capture models, our state model is most similar to that of Crosbie 
and Manly (1985), except that their model is nonspatial and does 
not accommodate age data. The primary differences between our 
model and similar open population SCR models (Gardner et al., 
2010; Raabe et al., 2013) is that the latter formulate the entry 
and survival processes using a hidden Markov model in discrete 
time, and they ignore age. Under the hidden Markov approach, 
each zi(t) after the first time period is modelled conditional on 
zi(t − 1), and therefore, there are T latent z variables to estimate 
for each individual, instead of just 2 (birth date and lifetime) as in 
our model. This reduces the number of latent variables that must 
be estimated, or integrated out of the likelihood, by a factor of T/2, 
thereby greatly reducing computation time.

Many model extensions warrant future exploration. As with 
most SCR models, we intentionally avoided the complexities asso-
ciated with adopting an explicit movement model, which is justi-
fied given that movement is typically not the subject of inquiry in 
capture–recapture studies. However, there are at least three situa-
tions in which it might be useful to adopt explicit movement models 

within a SCR framework. The first is if movement itself is of interest 
(Lebreton et al., 2003; Raabe et al., 2013; Royle, Fuller, & Sutherland, 
2016). For example, a movement model could be used to study the 
contributions of immigration to total, rather than in situ, recruitment. 
A second reason for adopting a movement model is to account for 
autocorrelation in detection times that might arise when detector 
density is high relative to the movement rate of the study species 
(Borchers et al., 2014). In our case, we dealt with temporal autocor-
relation by discarding nonindependent photos and by allowing the 
scale parameter of the detection function to increase with age. Even 
so, it is possible that some spatial autocorrelation was still present 
and unaccounted for in our model, and further thinning may have 
resulted in an unsatisfactory number of detections. A third reason 
for including a movement model would be to relax the assumption 
of stationary home ranges. Our model assumes that encounter rate 
depends only on age and the distance from the birth location to the 
detector. However, if individuals systematically select habitat that is 
far from their birth locations, bias in the encounter rate parameters 
could arise. Future work could address these issues by adopting a 
movement model, such as the Ornstein–Uhlenbeck process (Hooten, 
Johnson, McClintock, & Morales, 2017), and then modelling detec-
tion conditional on location at time t, rather than as a function of 
distance to activity centre. Another extension worth considering is 
allowing for negative covariance between the baseline encounter 
rate λ0 and the scale parameter σ, which would arise if animals spend 
less time near their home range centres as their home ranges expand 
with age (Efford & Mowat, 2014).

Several design issues should be considered when attempting to 
study recruitment with our model. As with most SCR studies, mini-
mizing the variance of the recruitment estimator can be achieved by 
finding the spatial arrangement of detectors that results in a good 
balance of the number of individuals detected and the number of 
recaptures obtained (Sollmann, Gardner, & Belant, 2012). Although 
there is no optimal spacing that applies to all systems, a good design 
can often be achieved by using a detector spacing of approximately 
2σ (Chandler & Royle, 2013). However, our model assumes that σ 
changes with age, indicating that the optimal detector density might 
also change throughout the season. Although the logistics associ-
ated with changing detector configurations during sampling could 
be prohibitive, it might be useful to attempt to keep detector spacing 
near 2σ by using high density clusters of detectors early in the sea-
son when most individuals are young, and then spreading them out 
into a more uniform pattern when home range sizes stabilize. This 
could help detect fawns at earlier ages, thereby removing some of 
the uncertainty about age-related variation in survival. The temporal 
aspect of the design is also likely to affect the precision of estimates. 
Intuitively, one should attempt to begin sampling before the first 
birth event and continue until the last recruitment event. Using data 
from shorter time intervals will add to the uncertainty about birth 
dates and survival times, but should not cause bias unless the model 
for the distribution of birth times is mis-specified. Although it would 
be impossible to fully explore these design and model consider-
ations, we recommend conducting simulation studies in the context 
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of specific study objectives and constraints, and we provide some 
simulation code in Supporting Information.

Results from our analysis of the deer data suggested that over-
all fawn survival rate was comparable to telemetry-based estimates 
from southern Florida Florida (Land, 1991); however, unlike other 
recent studies of fawn survival from elsewhere in the southeast-
ern US (Chitwood et al., 2015; Kilgo, Ray, Vukovich, Goode, & Ruth, 
2012; Saalfeld & Ditchkoff, 2007; Shuman et al., 2017), mortality 
rates were essentially constant during the first 6 months of life, 
with approximately 40% of individuals surviving to the recruitment 
age. Strikingly, a recent study from Louisiana found that only 50% 
of fawns survived the first week of life, although mortality rates 
quickly decreased to the point that 27% of the fawns in their sample 
survived to 84 days (Shuman et al., 2017). We propose three hypoth-
eses to explain the large differences in age-specific survival rates 
between our study area and those in other regions of the south-
eastern US. First, previous studies used telemetry, and it is possible 
that some neonatal mortality in these studies was attributable to 
capture, handling, and use of the transmitters themselves. Although 
no evidence of transmitter and handling effects exists, it would be 
possible to evaluate this hypothesis by using our model to compare 
survival rates of collared and uncollared individuals.

A second hypothesis explaining the relatively low neonate mor-
tality that we observed concerns the unique predator community 
in our study area. Our work was conducted in the only region of 
the eastern US with a reproducing puma population. Panthers are 
ambush predators, and therefore may be less likely to depredate 
young fawns than other predators, particularly while fawns are still 
in the hiding phase and remain motionless for the majority of the 
day between feedings (Ballard, Lutz, Keegan, Carpenter, & deVos, 
2001; Preisser, Orrock, & Schmitz, 2007; Schmitz, 2008, but see 
McCoy, Murphie, Gunther, & Murphie, 2014). In addition, deer sur-
vival studies conducted elsewhere likely had higher densities of the 
three major fawn predators found in the southeastern US: black bear 
Ursus americanus, bobcat Lynx rufus, and coyote Canis latrans. Coyote 
density is extremely low in our study area relative to other regions in 
the southeastern US, as coyotes have been documented in southern 
Florida only within the last few decades (McCown & Scheick, 2007). 
Black bears can be effective fawn predators within the first few 
weeks of life before fawns are highly mobile (Shuman et al., 2017). 
However, South Florida black bears are largely dormant in February 
during peak fawning, and predation on deer by bears in this region 
appears to be opportunistic and only constitutes a small portion of 
their diet (Maehr & Brady, 1984). Additionally, bear density in Big 
Cypress (0.13 bears/km2, Humm, McCown, Scheick, & Clark, 2016) 
is considerably lower than in other areas of the southeastern US, 
such as Louisiana (0.66 bears/km2, Hooker, 2010). Bobcats are abun-
dant in our study area and can greatly affect fawn survival (Labisky, 
Boulay, Miller, Sargent, & Zultowsky, 1995; Land, 1991; Nelson et al., 
2015; Shuman et al., 2017), but they are ambush predators and 
therefore likely do not frequently encounter sedentary neonates.

A third explanation of the lack of evidence of age-related vari-
ation in survival is that our sample size may have been too small to 

detect the age effect. This is suggested by the wide credible interval 
for the shape parameter of the Weibull distribution. The lack of pre-
cision can be attributed to detecting only 28 fawns, most of which 
were first detected after their second week of life. The ability to 
detect age effects in survival can be expected to increase with the 
number of individuals detected, the average encounter rate, and 
timespan of the study relative to the average lifetime of the species. 
For species such as white-tailed deer with low neonate movement 
rates, precision could also be increased through efforts to increase 
encounter rates of young fawns or by extending the model to ac-
commodate both camera and telemetry data.

Another direction for future work is to develop better methods 
for aging individuals using camera data or other types of data for 
which age cannot be determined precisely. One option would be 
to conduct experiments with captive individuals to determine how 
morphological measurements, or perhaps ratios of measurements, 
change with age when individuals are detected at variable distances 
and angles. Simple regression models could then be used to predict 
age with more precision than we achieved with our wide birth date 
ranges. Future work could also attempt to account for the loss of 
spots after fawns are 6 months old. We ignored this problem be-
cause fewer than two individuals likely reached this age during our 
sampling time frame (Figure 6). However, we could have extended 
our time frame and modelled the spot loss process by incorporating 
data on unmarked individuals (Chandler & Royle, 2013).

Birth site locations were assumed to be mutually independent 
because we had no evidence of clustering or repulsion. For example, 
we never detected more than one fawn in a photo, and fecundity 
is believed to be <1.2 fawns/doe in southern Florida (Land, 1991). 
However, for species with higher fecundity that can give birth to 
multiple offspring in the same location, data on litter size could be 
used to model nonindependence of birth sites using a marked point 
process in which the mark is the number of individuals born at lo-
cation si (Diggle, 2013). More general forms of clustering could be 
modelled with a Neyman–Scott process, whereas territoriality and 
other forms of inhibition could be modelled with a Markov point pro-
cess (Reich & Gardner, 2014).

Our model could also be extended to include multiple age 
classes, which would allow for inferences about fecundity. In our 
analysis, we ignored the adult portion of the population and directly 
estimated the number of births per unit area. This was deliberate 
because adult female deer typically cannot be uniquely identified, 
making it difficult to estimate their abundance. However, if adult 
abundance could be estimated, perhaps by using recently devel-
oped methods for unmarked animals (Chandler & Royle, 2013), the 
expected number of births could be modelled using a density-de-
pendent fecundity function. Although this would increase the 
complexity of the model, it might result in more precise estimates 
of birth and recruitment parameters. More importantly, it would 
provide a means of connecting SCR models to classical age-struc-
tured population models and integral projection models, which are 
rarely formulated as spatially explicit statistical models (Caswell, 
2001; Ellner & Rees, 2006).
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